Mostrar el registro sencillo del ítem
dc.contributor.author
Sacco, Maximiliano Antonio

dc.contributor.author
Pulido, Manuel Arturo

dc.contributor.author
Ruiz, Juan Jose

dc.contributor.author
Tandeo, Pierre
dc.date.available
2025-05-12T12:30:36Z
dc.date.issued
2024-05
dc.identifier.citation
Sacco, Maximiliano Antonio; Pulido, Manuel Arturo; Ruiz, Juan Jose; Tandeo, Pierre; On‐line machine‐learning forecast uncertainty estimation for sequential data assimilation; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 150; 762; 5-2024; 2937-2954
dc.identifier.issn
0035-9009
dc.identifier.uri
http://hdl.handle.net/11336/261077
dc.description.abstract
Quantifying forecast uncertainty is a key aspect of state-of-the-art numerical weather prediction and data assimilation systems. Ensemble-based data assimilation systems incorporate state-dependent uncertainty quantification based on multiple model integrations. However, this approach is demanding in terms of computations and development. In this work, a machine-learning method is presented based on convolutional neural networks that estimates the state-dependent forecast uncertainty represented by the forecast error covariance matrix using a single dynamical model integration. This is achieved by the use of a loss function that takes into account the fact that the forecast errors are heteroscedastic. The performance of this approach is examined within a hybrid data assimilation method that combines a Kalman-like analysis update and the machine-learning-based estimation of a state-dependent forecast error covariance matrix. Observing system simulation experiments are conducted using the Lorenz´96 model as a proof-of-concept. The promising results show that the machine-learning method is able to predict precise values of the forecast covariance matrix in relatively high-dimensional states. Moreover, the hybrid data assimilation method shows similar performance to the ensemble Kalman filter, outperforming it when the ensembles are relatively small.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Machine learning
dc.subject
Data assimilation
dc.subject
Ensemble forecasting
dc.subject
Uncertainty quantification
dc.subject.classification
Meteorología y Ciencias Atmosféricas

dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
On‐line machine‐learning forecast uncertainty estimation for sequential data assimilation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-09T16:15:26Z
dc.journal.volume
150
dc.journal.number
762
dc.journal.pagination
2937-2954
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Sacco, Maximiliano Antonio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
dc.description.fil
Fil: Tandeo, Pierre. Imt Atlantique Bretagne Pays de la Loire.; Francia
dc.journal.title
Quarterly Journal of the Royal Meteorological Society

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4743
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.4743
Archivos asociados