Mostrar el registro sencillo del ítem
dc.contributor.author
Martínez Hernández, Israel
dc.contributor.author
Euán, Carolina
dc.contributor.author
Burr, Wesley S.
dc.contributor.author
Meis, Melanie
dc.contributor.author
Blangiardo, Marta
dc.contributor.author
Pirani, Monica
dc.date.available
2025-05-12T11:30:21Z
dc.date.issued
2024-10
dc.identifier.citation
Martínez Hernández, Israel; Euán, Carolina; Burr, Wesley S.; Meis, Melanie; Blangiardo, Marta; et al.; Modelling particle number size distribution: a continuous approach; Wiley Blackwell Publishing, Inc; Journal Of The Royal Statistical Society Series C-applied Statistics; 74; 1; 10-2024; 229-248
dc.identifier.issn
0035-9254
dc.identifier.uri
http://hdl.handle.net/11336/261015
dc.description.abstract
Particulate matter (PM) is well known to be detrimental to health, and it is crucial to apportion PM into the underlying sources to target policies. Particle number size distribution (PNSD) is the most accessible data to identify these sources, which provides information on the PM sizes. Here, we propose a new functional factor model for PNSD, which allows to disentangle PM into sources and contributions while considering the complex dependencies of the data across different sizes and periods. Through a simulation study, we show that this method is able to identify sources correctly, and we use it to analyse hourly PNSD data collected in London for 7 years, finding 6 well-defined sources. Our proposed methodology is fast, accurate, and reproducible.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
AIR POLLUTION
dc.subject
FUNCTIONAL DATA
dc.subject
FUNCTIONAL FACTOR MODEL
dc.subject
ULTRAFINE PARTICLES
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Modelling particle number size distribution: a continuous approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-09T15:55:31Z
dc.journal.volume
74
dc.journal.number
1
dc.journal.pagination
229-248
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Martínez Hernández, Israel. Lancaster University; Reino Unido
dc.description.fil
Fil: Euán, Carolina. Lancaster University; Reino Unido
dc.description.fil
Fil: Burr, Wesley S.. Trent University (trent University);
dc.description.fil
Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
dc.description.fil
Fil: Blangiardo, Marta. Imperial College London; Reino Unido
dc.description.fil
Fil: Pirani, Monica. Imperial College London; Reino Unido
dc.journal.title
Journal Of The Royal Statistical Society Series C-applied Statistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jrsssc/advance-article/doi/10.1093/jrsssc/qlae053/7820614
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/jrsssc/qlae053
Archivos asociados