Mostrar el registro sencillo del ítem
dc.contributor.author
Goñi, Gerardo
dc.contributor.author
Nesmachnow, Sergio
dc.contributor.author
Rossit, Diego Gabriel
dc.contributor.author
Moreno Bernal, Pedro
dc.contributor.author
Tchernykh, Andrei
dc.date.available
2025-05-09T11:53:35Z
dc.date.issued
2025-04
dc.identifier.citation
Goñi, Gerardo; Nesmachnow, Sergio; Rossit, Diego Gabriel; Moreno Bernal, Pedro; Tchernykh, Andrei; Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks; Multidisciplinary Digital Publishing Institute; Mathematical and Computational Applications; 30; 2; 4-2025; 1-35
dc.identifier.issn
1300-686X
dc.identifier.uri
http://hdl.handle.net/11336/260892
dc.description.abstract
This article studies the effective design of content distribution networks over cloud computing platforms. This problem is relevant nowadays to provide fast and reliable access to content on the internet. A bio-inspired evolutionary multiobjective optimization approach is applied as a viable alternative to solve realistic problem instances where exact optimization methods are not applicable. Ad hoc representation and search operators are applied to optimize relevant metrics from the point of view of both system administrators and users. In the evaluation of problem instances built using real data, the evolutionary multiobjective optimization approach was able to compute more accurate solutions in terms of cost and quality of service when compared to the exact resolution method. The obtained results represent an improvement over greedy heuristics from 47.6% to 93.3% in terms of cost while maintaining competitive quality of service. In addition, the computed solutions had different tradeoffs between the problem objectives. This can provide different options for content distribution network design, allowing for a fast configuration that fulfills specific quality of service demands.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Multidisciplinary Digital Publishing Institute
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CONTENT DISTRIBUTION NETWORKS
dc.subject
EVOLUTIONARY ALGORITHMS
dc.subject
OPTIMIZATION
dc.subject
CLOUD COMPUTING
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-08T14:23:09Z
dc.identifier.eissn
2297-8747
dc.journal.volume
30
dc.journal.number
2
dc.journal.pagination
1-35
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Goñi, Gerardo. Universidad de la República; Uruguay
dc.description.fil
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay
dc.description.fil
Fil: Rossit, Diego Gabriel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Moreno Bernal, Pedro. Universidad Autónoma del Estado de Morelos.; México
dc.description.fil
Fil: Tchernykh, Andrei. Consejo Nacional de Ciencia y Tecnología de México. Centro de Investigación Científica y de Educación Superior de Ensenada Baja California; México
dc.journal.title
Mathematical and Computational Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2297-8747/30/2/45
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/mca30020045
Archivos asociados