Mostrar el registro sencillo del ítem

dc.contributor.author
Goñi, Gerardo  
dc.contributor.author
Nesmachnow, Sergio  
dc.contributor.author
Rossit, Diego Gabriel  
dc.contributor.author
Moreno Bernal, Pedro  
dc.contributor.author
Tchernykh, Andrei  
dc.date.available
2025-05-09T11:53:35Z  
dc.date.issued
2025-04  
dc.identifier.citation
Goñi, Gerardo; Nesmachnow, Sergio; Rossit, Diego Gabriel; Moreno Bernal, Pedro; Tchernykh, Andrei; Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks; Multidisciplinary Digital Publishing Institute; Mathematical and Computational Applications; 30; 2; 4-2025; 1-35  
dc.identifier.issn
1300-686X  
dc.identifier.uri
http://hdl.handle.net/11336/260892  
dc.description.abstract
This article studies the effective design of content distribution networks over cloud computing platforms. This problem is relevant nowadays to provide fast and reliable access to content on the internet. A bio-inspired evolutionary multiobjective optimization approach is applied as a viable alternative to solve realistic problem instances where exact optimization methods are not applicable. Ad hoc representation and search operators are applied to optimize relevant metrics from the point of view of both system administrators and users. In the evaluation of problem instances built using real data, the evolutionary multiobjective optimization approach was able to compute more accurate solutions in terms of cost and quality of service when compared to the exact resolution method. The obtained results represent an improvement over greedy heuristics from 47.6% to 93.3% in terms of cost while maintaining competitive quality of service. In addition, the computed solutions had different tradeoffs between the problem objectives. This can provide different options for content distribution network design, allowing for a fast configuration that fulfills specific quality of service demands.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CONTENT DISTRIBUTION NETWORKS  
dc.subject
EVOLUTIONARY ALGORITHMS  
dc.subject
OPTIMIZATION  
dc.subject
CLOUD COMPUTING  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bio-Inspired Multiobjective Optimization for Designing Content Distribution Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-08T14:23:09Z  
dc.identifier.eissn
2297-8747  
dc.journal.volume
30  
dc.journal.number
2  
dc.journal.pagination
1-35  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Goñi, Gerardo. Universidad de la República; Uruguay  
dc.description.fil
Fil: Nesmachnow, Sergio. Universidad de la República; Uruguay  
dc.description.fil
Fil: Rossit, Diego Gabriel. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Moreno Bernal, Pedro. Universidad Autónoma del Estado de Morelos.; México  
dc.description.fil
Fil: Tchernykh, Andrei. Consejo Nacional de Ciencia y Tecnología de México. Centro de Investigación Científica y de Educación Superior de Ensenada Baja California; México  
dc.journal.title
Mathematical and Computational Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2297-8747/30/2/45  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/mca30020045