Mostrar el registro sencillo del ítem

dc.contributor.author
Broens, Martin Ignacio  
dc.contributor.author
Saavedra, Eduardo  
dc.contributor.author
Pusiol, Enzo Fabrizio  
dc.contributor.author
Bajales Luna, Noelia  
dc.contributor.author
Escrig, Juan  
dc.date.available
2025-05-09T10:34:44Z  
dc.date.issued
2024-04  
dc.identifier.citation
Broens, Martin Ignacio; Saavedra, Eduardo; Pusiol, Enzo Fabrizio; Bajales Luna, Noelia; Escrig, Juan; Tailoring ferromagnetic resonance properties of cobalt nanowires: effects of shape and magnetocrystalline anisotropies; Royal Society of Chemistry; Journal of Materials Chemistry C; 12; 19; 4-2024; 7009-7016  
dc.identifier.issn
2050-7526  
dc.identifier.uri
http://hdl.handle.net/11336/260863  
dc.description.abstract
In this study, we investigate the influence of shape and magnetocrystalline anisotropies on the magnetic dynamic susceptibility of individual cobalt nanowires (Co-NWs) through micromagnetic simulations. The simulations encompassed a range of nanowire diameters from 10 to 150 nm and lengths from 50 nm to 1 μm, considering three magnetocrystalline anisotropy scenarios: no anisotropy, easy-plane anisotropy, and easy-axis anisotropy. The results reveal that shape anisotropy leads to ground states characterized as flower, twisted flower, or vortex configurations, while the prevalence of flower or vortex states depends on whether easy-axis or easy-plane magnetocrystalline anisotropy is present, respectively. The interplay between shape and magnetocrystalline anisotropies yields diverse effects in the ferromagnetic resonance response, contingent upon the nanowire´s ground magnetic state. For Co-NWs with flower and twisted flower states, the edge-mode frequency can be modulated predominantly by varying the nanowire diameter, while the fundamental-mode frequency is influenced by the nanowire´s length. In contrast, Co-NWs with a vortex state exhibit azimuthal mode, with their number and frequencies primarily dependent on the nanowire diameter, while gyrotropic modes are affected by the nanowire´s length. Furthermore, nanowires featuring uniaxial magnetocrystalline anisotropy (MCA) exhibit higher resonant frequencies compared to those without MCA. The insights gained from this investigation offer valuable guidance for tailoring cobalt nanowires with specific ferromagnetic resonance properties, facilitating their utilization in various applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MICROMAGNETIC  
dc.subject
COBALT  
dc.subject
NANOWIRES  
dc.subject
ANISOTROPY  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Tailoring ferromagnetic resonance properties of cobalt nanowires: effects of shape and magnetocrystalline anisotropies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-09T09:12:24Z  
dc.identifier.eissn
2050-7534  
dc.journal.volume
12  
dc.journal.number
19  
dc.journal.pagination
7009-7016  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Broens, Martin Ignacio. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Saavedra, Eduardo. Universidad de Santiago de Chile; Chile  
dc.description.fil
Fil: Pusiol, Enzo Fabrizio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Bajales Luna, Noelia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Escrig, Juan. Universidad de Santiago de Chile; Chile  
dc.journal.title
Journal of Materials Chemistry C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4TC00564C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/D4TC00564C