Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates

Cerino, FrancoIcon ; Diaz Pace, Jorge AndresIcon ; Tassone, Emmanuel AgustinIcon ; Tiglio, ManuelIcon ; Villegas, Atuel
Fecha de publicación: 01/2024
Editorial: MDPI
Revista: Universe
ISSN: 2218-1997
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

In a previous work, we introduced, in the context of gravitational wave science, an initial study on an automated domain-decomposition approach for a reduced basis through hp-greedy refinement. The approach constructs local reduced bases of lower dimensionality than global ones, with the same or higher accuracy. These “light” local bases should imply both faster evaluations when predicting new waveforms and faster data analysis, particularly faster statistical inference (the forward and inverse problems, respectively). In this approach, however, we have previously found important dependence on several hyperparameters, which do not appear in a global reduced basis. This naturally leads to the problem of hyperparameter optimization (HPO), which is the subject of this paper. Here, we compare the efficiency of the Bayesian approach against grid and random searches, which are two order of magnitude slower. Then, we tackle the problem of HPO through Bayesian optimization.We find that, for the cases studied here of gravitational waves from the collision of two spinning but non-precessing black holes, for the same accuracy, local hp-greedy reduced bases with HPO have a lower dimensionality of up to 4×, depending on the desired accuracy. This factor should directly translate into a parameter estimation speedup in the context of reduced order quadratures, for instance. Such acceleration might help in the near real-time requirements for electromagnetic counterparts of gravitational waves from compact binary coalescences. The code developed for this project is available open source from public repositories.
Palabras clave: GRAVITATIONAL WAVE SURROGATES , MACHINE LEARNING , REDUCED BASIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.315Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/260856
URL: https://www.mdpi.com/2218-1997/10/1/6
DOI: http://dx.doi.org/10.3390/universe10010006
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Cerino, Franco; Diaz Pace, Jorge Andres; Tassone, Emmanuel Agustin; Tiglio, Manuel; Villegas, Atuel; Hyperparameter Optimization of an hp-Greedy Reduced Basis for Gravitational Wave Surrogates; MDPI; Universe; 10; 1; 1-2024; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES