Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection

Santos, David O.; Montalvão, Jugurta; Araujo, Charles A. C.; Lebre, Ulisses D. E. S.; Ferreira, Tarso V.; Oliveira Freire, EduardoIcon
Fecha de publicación: 06/2024
Editorial: Multidisciplinary Digital Publishing Institute
Revista: Sensors
ISSN: 1424-8220
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

This paper explores a data augmentation approach for images of rigid bodies, particularly focusing on electrical equipment and analogous industrial objects. By leveraging manufacturer-provided datasheets containing precise equipment dimensions, we employed straightforward algorithms to generate synthetic images, permitting the expansion of the training dataset from a potentially unlimited viewpoint. In scenarios lacking genuine target images, we conducted a case study using two well-known detectors, representing two machine-learning paradigms: the Viola–Jones (VJ) and You Only Look Once (YOLO) detectors, trained exclusively on datasets featuring synthetic images as the positive examples of the target equipment, namely lightning rods and potential transformers. Performances of both detectors were assessed using real images in both visible and infrared spectra. YOLO consistently demonstrates 1 scores below 26% in both spectra, while VJ’s scores lie in the interval from 38% to 61%. This performance discrepancy is discussed in view of paradigms’ strengths and weaknesses, whereas the relatively high scores of at least one detector are taken as empirical evidence in favor of the proposed data augmentation approach.
Palabras clave: Electrical equipment , Infrared spectrum , Machine vision , Object detection
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 15.16Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/260572
URL: https://www.mdpi.com/1424-8220/24/13/4219
DOI: http://dx.doi.org/10.3390/s24134219
Colecciones
Articulos(INSIBIO)
Articulos de INST.SUP.DE INVEST.BIOLOGICAS
Citación
Santos, David O.; Montalvão, Jugurta; Araujo, Charles A. C.; Lebre, Ulisses D. E. S.; Ferreira, Tarso V.; et al.; Performance Assessment of Object Detection Models Trained with Synthetic Data: A Case Study on Electrical Equipment Detection; Multidisciplinary Digital Publishing Institute; Sensors; 24; 13; 6-2024; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES