Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An Evolutionary Strategy with a Tailor-Made Repair Operator for Natural-Gas Management Under Supply Shortages

Villar, Luciana BelénIcon ; de Meio Reggiani, Martín CarlosIcon ; Vigier, Hernan Pedro; Brignole, Nélida BeatrizIcon
Fecha de publicación: 05/2024
Editorial: Elsevier
Revista: Social Science Research Network
ISSN: 1556-5068
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Managing natural gas (NG) demand under uncertainty and limited storage capacity is especially critical to determine sustainable strategies that lead to significant savings. In this paper an evolutionary approach is proposed to support policy decision-making when NG supply shortages are imposed. The eventual winter scarcity of NG in countries like Argentina, China, South Korea, India, Canada and Australia, where industrial plants are forced to operate under low-supply conditions, has become a crucial budget problem. Evolutionary algorithms based on Darwinian principles have proved to be promising to handle real-world problems whose treatment involves complex and nonlinear optimization. Hence, the strategy is based on a Real Coded Genetic Algorithm, which was enhanced with specialized repair operators. A dynamic chromosome contemplates the long-term horizons, thus contributing to the accuracy of realistic results. Since the decoded solution may sometimes be infeasible, a specially designed procedure is always applied to repair it. The proposed methodology allows to systematically address changes in feedstock supply and market demand as a whole. Efficient tactical planning was achieved by optimizing the NG amounts provided. This strategy could locate feasible convenient solutions within reasonable computing times.
Palabras clave: OPTIMIZATION , GENETIC ALGORITHM , PLANNING , RCGA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 501.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/260387
URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4823017
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Villar, Luciana Belén; de Meio Reggiani, Martín Carlos; Vigier, Hernan Pedro; Brignole, Nélida Beatriz; An Evolutionary Strategy with a Tailor-Made Repair Operator for Natural-Gas Management Under Supply Shortages; Elsevier; Social Science Research Network; 5-2024; 1-24
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES