Artículo
Graphs whose vertices of degree at least 2 lie in a triangle
do Forte, Vinicius L.; Lin, Min Chih
; Lucena, Abilio; Maculan, Nelson; Moyano, Verónica Andrea
; Szwarcfiter, Jayme L.


Fecha de publicación:
12/2024
Editorial:
EDP Sciences
Revista:
Rairo - Recherche Operationnelle (operations Research)
ISSN:
0399-0559
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A pendant vertex is one of degree one and an isolated vertex has degree zero. A neighborhood star-free (NSF for short) graph is one in which every vertex is contained in a triangle except pendant vertices and isolated vertices. This class has been considered before for several contexts. In the present paper, we study the complexity of the dominating induced matching (DIM) problem and the perfect edge domination (PED) problem for NSF graphs. We prove the corresponding decision problems are NP-Complete for several of its subclasses. As an added value of this study, we show three connected variants of planar positive 1in3SAT are also NP-Complete. Since these variants are more basic in complexity theory context than many graph problems, these results can be useful to prove that other problems are NP-Complete.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
do Forte, Vinicius L.; Lin, Min Chih; Lucena, Abilio; Maculan, Nelson; Moyano, Verónica Andrea; et al.; Graphs whose vertices of degree at least 2 lie in a triangle; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 58; 6; 12-2024; 5063-5077
Compartir
Altmétricas