Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Tetrascatt Model: Born Approximation for the Estimation of Acoustic Dispersion of Fluid-Like Objects of Arbitrary Geometries

Lavia, Edmundo; Gonzalez, Juan Domingo; Cascallares, Maria GuadalupeIcon
Fecha de publicación: 12/2024
Editorial: American Society of Mechanical Engineers
Revista: Journal Of Vibration And Acoustics-transactions Of The Asme
ISSN: 1048-9002
e-ISSN: 1528-8927
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Modeling the acoustic scattering response due to penetrable objects of arbitrary shapes, such as those of many marine organisms, can be computationally intensive, often requiring high-performance computing equipment when considering a completely general situation. However, when the physical properties (sound speed and density) of the scatterer are similar to those of the surrounding medium, the Born approximation provides a computationally efficient way to calculate it. For simple geometrical shapes like spheres and spheroids, the acoustic scattering in the far field evaluated through the Born approximation recipe results in a formula that has been historically employed to predict the response of weakly scattering organisms, such as zooplankton. Further, the Born approximation has been extended to bodies whose geometry can be described as a collection of noncircular rings centered on a smooth curve. In this work, we have developed a numerical approach to calculate the far-field backscattering by arbitrary 3D objects under the Born approximation. The object´s geometry is represented by a volumetric mesh composed of tetrahedrons, and the computation is efficiently performed through analytical 3D integration, yielding a solution expressed in terms of elementary functions. On a current desktop PC the model can compute the scattering from meshes with millions of elements in a matter of minutes. This model is able to compute the scattering from a complex shape 200× faster than other methods like the Boundary Element Method, without compromising the numeric quality of the solution. The method´s correctness has been successfully validated against benchmark solutions. Additionally, we present acoustic scattering results for species with complex geometries. To enable other researchers to use and validate the method, a computational package named tetrascatt was developed in the R programming language and published in the CRAN (Comprehensive R Archive Network).
Palabras clave: Boundary element methods , Backscattering , Ultrasound
Ver el registro completo
 
Archivos asociados
Tamaño: 1.037Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259907
URL: https://asmedigitalcollection.asme.org/vibrationacoustics/article-abstract/147/1
DOI: https://doi.org/10.1115/1.4067286
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Lavia, Edmundo; Gonzalez, Juan Domingo; Cascallares, Maria Guadalupe; Tetrascatt Model: Born Approximation for the Estimation of Acoustic Dispersion of Fluid-Like Objects of Arbitrary Geometries; American Society of Mechanical Engineers; Journal Of Vibration And Acoustics-transactions Of The Asme; 147; 1; 12-2024; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES