Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR)

Cabrera, Leoncio; Ardid, Alberto; Fernandez Melchor, IvanIcon ; Ruiz, Sergio; Symmes Lopetegui, Blanca; Carlos Báez, Juan; Delgado, Francisco; Martinez Yáñez, Pablo; Dempsey, David; Cronin, Shane
Fecha de publicación: 05/2024
Editorial: Seismological Soc Amer
Revista: Seismological Research Letters
ISSN: 0895-0695
e-ISSN: 1938-2057
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Vulcanología

Resumen

Anticipating volcanic eruptions remains a challenge despite significant scientific advancements, leading to substantial human and economic losses. Traditional approaches, like volcano alert levels, provide current volcanic states but do not always include eruption forecasts. Machine learning (ML) emerges as a promising tool for eruption forecasting, offering data-driven insights. We propose an ML pipeline using volcano-seismic data, integrating precursor extraction, classification modeling, and decision-making for eruption alerts. Testing on six Copahue volcano eruptions demonstrates our model’s ability to identify precursors and issue advanced warnings pseudoprospectively. Our model provides alerts 5–75 hr before eruptions and achieving a high true negative rate, indicating robust discriminatory power. Integrating short- and long-term data reveals seismic sensitivity, emphasizing the need for comprehensive volcanic monitoring. Our approach showcases ML’s potential to enhance eruption forecasting and risk mitigation. In addition, we analyze long-term geodetic data (Interferometric Synthetic Aperture Radar and Global Navigation Satellite System) to assess Copahue volcano deformation trends, in which we notice an absence of noteworthy deformation in the signals associated with the six small eruptions, aligning with their small magnitude.
Palabras clave: COPAHUE VOLCANO
Ver el registro completo
 
Archivos asociados
Tamaño: 12.98Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259656
URL: https://pubs.geoscienceworld.org/ssa/srl/article/95/5/2595/644475/Eruption-Forec
DOI: http://dx.doi.org/10.1785/0220240022
Colecciones
Articulos(IIPG)
Articulos de INSTITUTO DE INVESTIGACION EN PALEOBIOLOGIA Y GEOLOGIA
Citación
Cabrera, Leoncio; Ardid, Alberto; Fernandez Melchor, Ivan; Ruiz, Sergio; Symmes Lopetegui, Blanca; et al.; Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR); Seismological Soc Amer; Seismological Research Letters; 95; 5; 5-2024; 2595-2610
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES