Mostrar el registro sencillo del ítem
dc.contributor.author
Gonzalez Andujar, J. L.
dc.contributor.author
Chantre Balacca, Guillermo Ruben
dc.contributor.author
Morvillo, C.
dc.contributor.author
Blanco, Anibal Manuel
dc.contributor.author
Forcella, F.
dc.date.available
2017-10-05T15:25:38Z
dc.date.issued
2016-12
dc.identifier.citation
Gonzalez Andujar, J. L.; Chantre Balacca, Guillermo Ruben; Morvillo, C.; Blanco, Anibal Manuel; Forcella, F.; Predicting field weed emergence with empirical models and soft computing techniques; Wiley Blackwell Publishing, Inc; Weed Research; 56; 6; 12-2016; 415-423
dc.identifier.issn
0043-1737
dc.identifier.uri
http://hdl.handle.net/11336/25959
dc.description.abstract
Seedling emergence is one of the most important phenological processes that influence the success of weed species. Therefore, predicting weed emergence timing plays a critical role in scheduling weed management measures. Important efforts have been made in the attempt to develop models to predict seedling emergence patterns for weed species under field conditions. Empirical emergence models have been the most common tools used for this purpose. They are based mainly on the use of temperature, soil moisture and light. In this review, we present the more popular empirical models, highlight some statistical and biological limitations that could affect their predictive accuracy and, finally, we present a new generation of modelling approaches to tackle the problems of conventional empirical models, focusing mainly on soft computing techniques. We hope that this review will inspire weed modellers and that it will serve as a basis for discussion and as a frame of reference when we proceed to advance the modelling of field weed emergence.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Artificial Neural Networks
dc.subject
Day Degrees
dc.subject
Genetic Algorithms
dc.subject
Nonlinear Regression
dc.subject
Predictive Modelling
dc.subject
Weed Control
dc.subject
D °C
dc.title
Predicting field weed emergence with empirical models and soft computing techniques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-19T14:44:09Z
dc.journal.volume
56
dc.journal.number
6
dc.journal.pagination
415-423
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Gonzalez Andujar, J. L.. Instituto de Agricultura Sostenible. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
dc.description.fil
Fil: Morvillo, C.. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
dc.description.fil
Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Forcella, F.. United States Department of Agriculture; Estados Unidos
dc.journal.title
Weed Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/wre.12223/abstract
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/wre.12223
Archivos asociados