Mostrar el registro sencillo del ítem

dc.contributor.author
Cabrera, Maria Ines  
dc.contributor.author
Grau, Ricardo José Antonio  
dc.date.available
2017-10-04T20:21:07Z  
dc.date.issued
2007-04  
dc.identifier.citation
Cabrera, Maria Ines; Grau, Ricardo José Antonio; A Generalized Integral Method for Solving the Design Equations of Dissolution-Diffusion Controlled Drug Release from Planar, Cylindrical and Spherical Matrix Devices; Elsevier Science; Journal of Membrane Science; 293; 1-2; 4-2007; 1-14  
dc.identifier.issn
0376-7388  
dc.identifier.uri
http://hdl.handle.net/11336/25943  
dc.description.abstract
A versatile approach for solving the design equations of dissolution/diffusion-controlled drug release from planar, cylindrical and spherical matrix systems is provided, as an extension of a previously validated approach for planar geometry. The original set of differential mass balance equations is cast into an equivalent system of integral equations by generating appropriate Green’s functions. Mathematical features common to the matrix geometry, drug diffusion process, and boundary layer resistance are imbedded in Green’s functions, and thus separated from specific aspects arising from the drug dissolution process. This avoids repetitive computational effort when analyzing different drug dissolution rates. The solution for the perfect sink condition is given as a special case. Another singular feature is related to the friendly manipulation of a broad variety of spatially non-uniform drug loading, including size distribution of solid drug particles. Composite matrices consisting of multi-layers of equal diffusivity, including membranes, can be numerically simulated solving a concise dissolution–diffusion integral equation, coupled to the integral equations governing the variable surface area of the dissolving drug particles. This is made within a unique framework and without introducing extra difficulties or adjustments in the programming from one matrix architecture to another. The reliability of the approach presented is ascertained by comparing the results with existing analytical and numerical solutions for special cases, and also by matching, as asymptotic case, the numerical solution of the diffusion equation with a continuum dissolution source described by the Noyes–Whitney equation. An iterative routine, combined with the topological concept of homotopy, is used to improve the numerical performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Generalized Integral Method for Solving the Design Equations of Dissolution-Diffusion Controlled Drug Release from Planar, Cylindrical and Spherical Matrix Devices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-04T14:44:27Z  
dc.journal.volume
293  
dc.journal.number
1-2  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cabrera, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Grau, Ricardo José Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Journal of Membrane Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.memsci.2007.01.013  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0376738807000300