Mostrar el registro sencillo del ítem
dc.contributor.author
Montoya, Oscar Danilo
dc.contributor.author
Serra, Federico Martin
dc.contributor.author
Gil González, Walter
dc.contributor.author
Grisales Noreña, Luis Fernando
dc.contributor.author
Hernández, Jesús C.
dc.date.available
2025-04-24T10:06:49Z
dc.date.issued
2024-07
dc.identifier.citation
Montoya, Oscar Danilo; Serra, Federico Martin; Gil González, Walter; Grisales Noreña, Luis Fernando; Hernández, Jesús C.; Multi-Objective Dispatch for Batteries and Renewable Generation Sources in Distribution Grids Using a Weighting-Based Convex Approach While Considering Uncertainty; Institute of Electrical and Electronics Engineers; IEEE Access; 12; 7-2024; 92020-92034
dc.identifier.issn
2169-3536
dc.identifier.uri
http://hdl.handle.net/11336/259430
dc.description.abstract
This research presents a multi-objective dispatch (MOD) for energy storage systems (ESS) utilizing batteries and renewable energy resources (RES) in distribution network applications. This proposal employs a convex weighting-based approach. The exact MOD nonlinear programming model, which is non-convex due to the power balance constraint, is approximated using a second-order cone equivalent in order to ensure a global optimum, leveraging the convex properties of the objective functions and the conic equivalent in the complex-variable domain. The MOD, based on the linear combination of the objective functions via the weighting-based method, enables the construction of the optimal Pareto front, as each combination of the weighting factors generates a convex optimization sub-problem. The MOD analysis simultaneously considers the minimization of the expected grid operating costs with regard to energy purchasing at the substation terminals, the reduction of the operating costs associated with the RES and the ESS, and the minimization of the expected daily energy losses. This research makes two contributions: 1) the incorporation of the active and reactive power capabilities of the power electronic converters that interface with the ESS and the RES and 2) a robust analysis via convex optimization to address the uncertainties related to the expected daily generation and demand profiles. Numerical results obtained in the IEEE 33- and 85-bus test system confirm the effectiveness and robustness of the proposed MOD in comparison with the continuous genetic algorithm, the particle swarm optimizer, and the vortex search algorithm. In addition, the best metah-euristic technique was employed for constructing the Pareto front and comparing its performance against the proposed convex approach for the 33-bus grid. In the case of the 85-bus grid, battery power losses were included to demonstrate the effectiveness of this solution methodology in medium-scale distribution grids.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ENERGY LOSS MINIMIZATION
dc.subject
GRID OPERATING COST MINIMIZATION
dc.subject
MULTI-OBJECTIVE DISPATCH
dc.subject
SECOND-ORDER CONIC EQUIVALENT
dc.subject
ROBUST CONVEX OPTIMIZATION
dc.subject
VARIABLE POWER FACTOR OPERATION
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Multi-Objective Dispatch for Batteries and Renewable Generation Sources in Distribution Grids Using a Weighting-Based Convex Approach While Considering Uncertainty
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-23T09:15:13Z
dc.journal.volume
12
dc.journal.pagination
92020-92034
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Montoya, Oscar Danilo. Universidad Distrital Francisco José de Caldas; Colombia
dc.description.fil
Fil: Serra, Federico Martin. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Agropecuarias. Laboratorio de Control Automático; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; Argentina
dc.description.fil
Fil: Gil González, Walter. Universidad Tecnológica de Pereira; Colombia
dc.description.fil
Fil: Grisales Noreña, Luis Fernando. Universidad de Talca; Chile
dc.description.fil
Fil: Hernández, Jesús C.. Universidad de Jaén; España
dc.journal.title
IEEE Access
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10579981/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ACCESS.2024.3421930
Archivos asociados