Mostrar el registro sencillo del ítem
dc.contributor.author
Peralta, Juan Manuel
dc.contributor.author
Rubiolo, Amelia Catalina
dc.contributor.author
Zorrilla, Susana
dc.date.available
2017-10-04T20:14:55Z
dc.date.issued
2007-12
dc.identifier.citation
Peralta, Juan Manuel; Rubiolo, Amelia Catalina; Zorrilla, Susana; Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model; Elsevier; Journal of Food Engineering; 82; 4; 12-2007; 548-558
dc.identifier.issn
0260-8774
dc.identifier.uri
http://hdl.handle.net/11336/25938
dc.description.abstract
Immersion chilling and freezing (ICF) of foods use aqueous solutions at low temperature that are considered secondary refrigerants. These solutions contain solutes such as NaCl, CaCl2, KCl, ethanol, glucose, etc. The ICF processes have several advantages over the conventional food chilling and freezing methods. The aim of this work was to study the behavior of an excess Gibbs energy model for predicting thermodynamic properties of mixtures of electrolytes and non-electrolytes, considering the physical conditions used in immersion chilling and freezing of foods. The extended UNIQUAC model was used. Data obtained from literature for heat capacity, density and freezing point for binary aqueous solutions of NaCl, CaCl2, KCl and ethanol were compared with predicted values. Additional parameters for the density estimation were included into the model. In general, the model accuracy was satisfactory.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Refrigerant Liquids;
dc.subject
Foods
dc.subject
Prediction
dc.subject
Properties
dc.subject.classification
Alimentos y Bebidas
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Prediction of heat capacity, density and freezing point of liquid refrigerant solutions using an excess Gibbs energy model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-10-04T14:44:08Z
dc.journal.volume
82
dc.journal.number
4
dc.journal.pagination
548-558
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Peralta, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.journal.title
Journal of Food Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0260877407001823
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfoodeng.2007.03.010
Archivos asociados