Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Data-Driven Version of Multiway Soft Independent Modeling of Class Analogy (N-Way DD-SIMCA): Theory and Application

Pagani, Ariana Paula; Camargo, Gonzalo; Ibañez, Gabriela AlejandraIcon ; Olivieri, Alejandro CesarIcon ; Pomerantsev, Alexey L.; Rodionova, Oxana Ye
Fecha de publicación: 03/2024
Editorial: American Chemical Society
Revista: Analytical Chemistry
ISSN: 0003-2700
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

One-class classification (OCC) is discussed in the framework of the measurement and processing of multiway data. Data-driven soft independent modeling of class analogy (DD-SIMCA) is applied in the following formats: (1) multiblock and (2) Tucker 3 N-way SIMCA, which are shown to be useful tools for solving classification tasks. A new decision rule for N-way DD-SIMCA is adopted based on the conventional two-way DD-SIMCA model. Multiblock SIMCA is shown to be useful for variable13 selection, and Tucker 3 SIMCA to select the optimal model complexity when applying multiway data decomposition and to assess the role of individual samples in the classification model. Both approaches, together with the two-way DD-SIMCA version applied to the unfolded data, are compared regarding the analysis of an experimental data set including genuine and adulterated blueberry extract samples. The latter were employed to produce matrix spectral-time data matrices per sample within a flow injection system, taking advantage of the spectral changes in the sampleconstituents as a function of the pH of the carrier phase. The need to employ the Tucker 3 model instead of a trilinear decomposition is supported by a discussion on the lack of the trilinearity property of the studied data.
Palabras clave: CHEMOMETRICS , CLASSIFICATION , SIMCA , ADULTERATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.014Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259282
DOI: http://dx.doi.org/10.1021/acs.analchem.3c05096
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Pagani, Ariana Paula; Camargo, Gonzalo; Ibañez, Gabriela Alejandra; Olivieri, Alejandro Cesar; Pomerantsev, Alexey L.; et al.; Data-Driven Version of Multiway Soft Independent Modeling of Class Analogy (N-Way DD-SIMCA): Theory and Application; American Chemical Society; Analytical Chemistry; 96; 12; 3-2024; 4845-4853
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES