Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Prediction of attention profiles at age 3 and 4 years using a machine learning approach

Musso, Mariel FernandaIcon ; Cascallar, Eduardo; Rueda Cuerva, María del Rosario
Tipo del evento: Congreso
Nombre del evento: 10th International Congress for Integrative Developmental Cognitive Neuroscience
Fecha del evento: 07/09/2022
Institución Organizadora: Flux Society;
Título del Libro: 10th Annual Flux Congress: Abstract book
Editorial: Flux Society
Idioma: Inglés
Clasificación temática:
Psicología

Resumen

Attentional development involves complex interactions between multiple cognitive processes and other systems. Individual differences in attentional tasks depend not only on age-related changes, but also on nonlinear relationships among genetic, temperament, cognitive and physical conditions, environment, and motivation. Classical statistical methods have serious constrains to address this complex nature. Therefore, this study proposes to use several machine learning algorithms (ML) to predict characteristic results of normal development and deviations in the development of executive attention at 3 and 4 years old, considering cognitive, behavioral and EEG data, and parent reported measures, collected in a longitudinal study. This approach is expected to accurately classify the attentional profiles based on the task performance, and to identify very early markers of executive attention development. This study is part of one funded longitudinal project involving an initial sample of 151 babies and their families who participated on three waves of data collection (at 6, 9, and 16-18 months-old). Two waves of data collection are added: at 36 and 48 months old. Several measures were taken, involving behavioral tasks, eye-tracking tasks, EEG/ERPs protocols, parent-reported measures of child temperament and home environment. Other measures are included in the last two waves: WPPSI-IV, spatial conflict task, sustained attention task, visual sequence learning task, delay of gratification task, EEG resting protocol, BeeAT Task, child's temperament, family SES, parenting styles, parents' mental health, and ASD/ADHD symptomatology. ML methods (e.g., artificial neural networks, fast large margin, decision trees, etc.) and time series analyses will be developed through training and cross-validation phases to study the attentional trajectories across ages. Sensitivity analyses will be carried out to provide measures of therelative importance of each predictor.
Palabras clave: Prediction , Attention profiles , Children , Machine Learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.081Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259145
URL: https://fluxsociety.org/2022-paris/
URL: https://fluxsociety.org/wp-content/uploads/2022/08/2022-Flux-Abstract-Book.pdf
Colecciones
Eventos(CIIPME)
Eventos de CENTRO INTER. DE INV. EN PSICOLOGIA MATEMATICA Y EXP. "DR. HORACIO J.A RIMOLDI"
Citación
Prediction of attention profiles at age 3 and 4 years using a machine learning approach; 10th International Congress for Integrative Developmental Cognitive Neuroscience; Paris; Francia; 2022; 200-201
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES