Artículo
Active grid turbulence anomalies through the lens of physics informed neural networks
Angriman, Sofía; Smith, Sarah E.; Clark Di Leoni, Patricio
; Cobelli, Pablo Javier
; Mininni, Pablo Daniel
; Obligado, Martín



Fecha de publicación:
12/2024
Editorial:
Elsevier
Revista:
Results in Engineering
ISSN:
2590-1230
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Active grids operated with random protocols are a standard way to generate large Reynolds number turbulence in wind and water tunnels. But anomalies in the decay and third-order scaling of active-grid turbulence have been reported. We combine Laser Doppler Velocimetry and hot-wire anemometry measurements in a wind tunnel, with machine learning techniques and numerical simulations, to gain further understanding on the reasons behind these anomalies. Numerical simulations that incorporate the statistical anomalies observed in the experimental velocity field near the active grid can reproduce the experimental anomalies observed later in the decay. The results indicate that anomalies in experiments near the active grid introduce correlations in the flow that can persist for long times.
Palabras clave:
ACTIVE GRID
,
PINN
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Angriman, Sofía; Smith, Sarah E.; Clark Di Leoni, Patricio; Cobelli, Pablo Javier; Mininni, Pablo Daniel; et al.; Active grid turbulence anomalies through the lens of physics informed neural networks; Elsevier; Results in Engineering; 24; 12-2024; 1-9
Compartir
Altmétricas