Artículo
Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression
Fecha de publicación:
10/2013
Editorial:
IOPScience
Revista:
Journal of Physics: Conference Series
ISSN:
1742-6588
e-ISSN:
1742-6596
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database.
Palabras clave:
Aperture Filters
,
Logistic Regression
,
Ensembles of Classifiers
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression; IOPScience; Journal of Physics: Conference Series; 477; 1; 10-2013
Compartir
Altmétricas