Mostrar el registro sencillo del ítem
dc.contributor.author
Balderrama, Rocio Celeste
dc.contributor.author
Prieto, Mariana Ines
dc.contributor.author
Sanchez Fernandez de la Vega, Constanza Mariel
dc.contributor.author
Vazquez, Federico
dc.date.available
2025-04-15T12:22:38Z
dc.date.issued
2024-12
dc.identifier.citation
Balderrama, Rocio Celeste; Prieto, Mariana Ines; Sanchez Fernandez de la Vega, Constanza Mariel; Vazquez, Federico; Optimal control for an SIR model with limited hospitalised patients; Elsevier Science Inc.; Mathematical Biosciences; 378; 12-2024; 1-15
dc.identifier.issn
0025-5564
dc.identifier.uri
http://hdl.handle.net/11336/258820
dc.description.abstract
This paper analyses the optimal control of infectious disease propagation using a classic susceptible–infected–recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on non-pharmaceutical interventions ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such interventions, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value. We rigorously derive an optimal quarantine strategy based on necessary optimality conditions. The obtained optimal strategy is of a boundary-bang type, comprising three phases: an initial phase with no intervention, a second phase maintaining the infected population at its maximum possible value, and a final phase of partial lockdown applied over a single interval. The optimal policy is further refined by optimising the transition times between these phases. We show that these results are in excellent agreement with the numerical solution of the problem.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SIR model
dc.subject
Optimal control
dc.subject
Limited hospital resources
dc.subject
Limited quarantine
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Optimal control for an SIR model with limited hospitalised patients
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-14T10:35:31Z
dc.journal.volume
378
dc.journal.pagination
1-15
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Balderrama, Rocio Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Prieto, Mariana Ines. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Mathematical Biosciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0025556424001779
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mbs.2024.109317
Archivos asociados