Artículo
Thinness and its variations on some graph families and coloring graphs of bounded thinness
Bonomo, Flavia
; Brandwein, Eric
; Oliveira, Fabiano S.; Sampaio, Moysés S.; Sansone, Agustín
; Szwarcfiter, Jayme L.



Fecha de publicación:
04/2024
Editorial:
EDP Sciences
Revista:
Rairo - Recherche Operationnelle (operations Research)
ISSN:
0399-0559
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Interval graphs and proper interval graphs are well known graph classes, for which several generalizations have been proposed in the literature. In this work, we study the (proper) thinness, and several variations, for the classes of cographs, crowns graphs and grid graphs.We provide the exact values for several variants of thinness (proper, independent, complete, precedence, and combinations of them) for the crown graphs $CR_n$. For cographs, we prove that the precedence thinness can be determined in polynomial time. We also improve known bounds for the thinness of $n imes n$ grids $GR_n$ and $m imes n$ grids $GR_{m,n}$, proving that $left lceil rac{n-1}{3} ight ceil leq thin(GR_n) leq left lceil rac{n+1}{2} ight ceil$. Regarding the precedence thinness, we prove that $prec-thin(GR_{n,2}) = left lceil rac{n+1}{2} ight ceil$ and that $left lceil rac{n-1}{3} ight ceil left lceilrac{n-1}{2} ight ceil + 1 leq prec-thin(GR_n) leq left lceilrac{n-1}{2} ight ceil^2+1$. As applications, we show that the $k$-coloring problem is NP-complete for precedence $2$-thin graphs and for proper $2$-thin graphs, when $k$ is part of the input. On the positive side, it is polynomially solvable for precedence proper $2$-thin graphs, given the order and partition.
Palabras clave:
(proper) k-thin graphs
,
cographs
,
crown graphs
,
grid graphs
,
graph coloring
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; Brandwein, Eric; Oliveira, Fabiano S.; Sampaio, Moysés S.; Sansone, Agustín; et al.; Thinness and its variations on some graph families and coloring graphs of bounded thinness; EDP Sciences; Rairo - Recherche Operationnelle (operations Research); 58; 2; 4-2024; 1681-1702
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Bonomo-Braberman, Flavia; Durán, Guillermo; Safe, Martin Dario ; Wagler, Annegret K. (Elsevier Science, 2020-07-15)
-
de Caria, Pablo Jesús ; Gutierrez, Marisa (Elsevier Science, 2016-09)
-
Bonomo, Flavia ; Duran, Guillermo Alfredo ; Safe, Martin Dario ; Wagler, Annegret Katrin (Discrete Mathematics and Theoretical Computer Science, 2014-03)