Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Data science approach to simulating the FIFA World Cup Qatar 2022 at a website in tribute to Maradona

Álvarez, Alejandro; Cataldo, Alejandro; Duran, Guillermo AlfredoIcon ; Durán, Manuel; Galaz, Pablo; Monardo, Iván; Sauré, Denis
Fecha de publicación: 09/2024
Editorial: Springer Heidelberg
Revista: Computational Statistics (zeitschrift)
ISSN: 0943-4062
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

This article documents the authors’ experience developing an Argentinean website in tribute to Diego Maradona (301060.exactas.uba.ar) that leverages the popularity of football in South America (and the world) to illustrate the application of data science models in sports analytics. In particular, we demonstrate their use in computing probabilities associated with various events (winning matches, advancing rounds, and becoming champions) of the FIFA World Cup Qatar 2022. Building on Dixon and Cole’s 1997 seminal model, we develop a competing Poisson model that incorporates for each participating team its attack and defense strengths as well as home-advantage efects. The calibration of the model considers match importance levels and emphasizes the recency of a team’s performance. Evaluations of the model’s results on various prediction accuracy and error metrics indicate that its performance equals or betters the traditional Poisson model and is similar to established betting sites. Our website featuring the model received over 30,000 visits from 11,000 users across 10 countries during the 2022 World Cup and garnered signifcant media coverage in Argentina. This successful endeavor underlines the potential of mathematics for predicting football match outcomes but also showcases its potential for countless practical applications and its ability to capture the attention and interest of a wide audience.
Palabras clave: data science , soccer , prediction , mathematics
Ver el registro completo
 
Archivos asociados
Tamaño: 1.662Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258765
URL: https://link.springer.com/10.1007/s00180-024-01557-3
DOI: http://dx.doi.org/10.1007/s00180-024-01557-3
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Álvarez, Alejandro; Cataldo, Alejandro; Duran, Guillermo Alfredo; Durán, Manuel; Galaz, Pablo; et al.; Data science approach to simulating the FIFA World Cup Qatar 2022 at a website in tribute to Maradona; Springer Heidelberg; Computational Statistics (zeitschrift); 9-2024; 1-25
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES