Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SpinelVA. A new perspective for the visual analysis and classification of spinel group minerals

Antonini, Antonella SoledadIcon ; Luque, Leandro EmanuelIcon ; Ferracutti, Gabriela RoxanaIcon ; Bjerg, Ernesto AlfredoIcon ; Soria Castro, Silvia MercedesIcon ; Ganuza, María LujánIcon
Fecha de publicación: 03/07/2024
Editorial: Springer
Revista: Earth Science Informatics
ISSN: 1865-0473
e-ISSN: 1865-0481
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Spinel group minerals, found within various rock types, exhibit distinct categorizations based on their host rocks. According to Barnes and Roeder (2001), these minerals can be classified into eight primary groups, each further subdivided into variable numbers of subgroups that can be related to a particular tectonic setting. This classification is based on the cations corresponding to the end-members of the spinel prism and is traditionally analyzed in this prismatic space or using projections of it. In this prismatic representation, several categories tend to overlap, making it impossible to determine which is the tectonic environment in that scenario. An alternative to solve this problem is to generate representations of these groups considering more attributes, making the most of the many values measured during the geochemical analysis.In this paper, we present extit{SpinelVA}, a visual exploration tool that integrates Machine Learning techniques and allows the identification of groups using the cations considered by Barnes and Roeder and some additional ones obtained from chemical analysis. SpinelVA allows us to know the tectonic environment of unknown samples by categorizing them according to the Barnes and Roeder classification. Additionally, SpinelVA integrates a collection of visual analysis techniques alongside the already used spinel prism projections and provides a set of interactions that assist geologists in the exploration process. Users can perform a complete data analysis by combining the proposed techniques and associated interactions.
Palabras clave: EXPLORATORY DATA ANALYSIS , VISUAL ANALYTICS , MACHINE LEARNING , SPINEL GROUP MINERALS , TECTONIC SETTINGS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.604Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258678
DOI: https://doi.org/10.1007/s12145-024-01393-5
URL: https://link.springer.com/article/10.1007/s12145-024-01393-5
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(INGEOSUR)
Articulos de INST.GEOLOGICO DEL SUR
Citación
Antonini, Antonella Soledad; Luque, Leandro Emanuel; Ferracutti, Gabriela Roxana; Bjerg, Ernesto Alfredo; Soria Castro, Silvia Mercedes; et al.; SpinelVA. A new perspective for the visual analysis and classification of spinel group minerals; Springer; Earth Science Informatics; 17; 4; 3-7-2024; 3851-3861
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES