Mostrar el registro sencillo del ítem
dc.contributor.author
Atashi, H.
dc.contributor.author
Chen, Y.
dc.contributor.author
Chelotti, Jose Omar
dc.contributor.author
Lemal, P.
dc.contributor.author
Gengler, N.
dc.date.available
2025-04-09T11:36:16Z
dc.date.issued
2024-08
dc.identifier.citation
Atashi, H.; Chen, Y.; Chelotti, Jose Omar; Lemal, P.; Gengler, N.; Prediction of body condition score throughout lactation by random regression test‐day models; Wiley Blackwell Publishing, Inc; Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie; 142; 2; 8-2024; 214-222
dc.identifier.issn
0931-2668
dc.identifier.uri
http://hdl.handle.net/11336/258408
dc.description.abstract
Regular monitoring of body condition score (BCS) changes during lactation is a crucial management tool in dairy cattle; however, the current BCS measurements are often discontinuous and unevenly spaced in time. The aim of this study was to investigate the ability of random regression test-day models (RR-TDM) to predict BCS for the entire lactation in dairy cows even if the actual scoring is limited to one BCS record. The data consisted of test-day records of milk yield (MY), fat percentage (FP), protein percentage (PP) and BCS (based on a 9-point scale with unit increments; 1–9) collected from 2014 to 2022 in 128 herds in the Walloon Region of Belgium. In total, 20,698 test-day records on 2166 first-parity Holstein cows (2–12 with an average of 9.42 test-day records per cow) were available for MY, FP and PP; and 7985 records on the same animals (2–12 with an average of 3.68 records per cow) were available for BCS. To estimate the solutions, only one randomly selected BCS record per animal along with all her MY, FP and PP records were used, which were then used to predict BCS data (calibration set). The remaining BCS (1–11 with an average 2.86 BCS records per animal) were used to evaluate the goodness of the predictions (validation set). Multiple-trait RR-TDM was used to estimate (co)variance components through the average information restricted maximum likelihood (AI-REML) algorithm. Predicted BCS were grouped into nine classes as the original observed BCS used for comparison. Pearson correlation between the predicted and observed BCS, prediction error (PE), absolute prediction error (APE) and root mean squared prediction error (RMSE) were calculated. Mean (standard deviation; SD) BCS was 4.97 (1.01), 4.95 (1.07) and 4.98 (1.00) BCS units in the full, calibration and validation datasets, respectively. Pearson correlation between the observed and predicted BCS was 0.71, mean (SD) PE was 0.04 (0.52) BCS units, mean (SD) APE was 0.48 (0.53) BCS units and RMSE was 0.72 BCS units. These findings demonstrate the ability of RR-TDM to predict BCS for the entire lactation using a single BCS record along with available test-day records of milk yield and composition in Holstein dairy cows.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley Blackwell Publishing, Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
BODY CONDITION SCORE
dc.subject
RANDOM REGRESSION MODELS
dc.subject
PRECISION LIVESTOCK FARMING
dc.subject
DAIRY CATTLE
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Prediction of body condition score throughout lactation by random regression test‐day models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-07T10:35:39Z
dc.journal.volume
142
dc.journal.number
2
dc.journal.pagination
214-222
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Atashi, H.. Université de Liège; Bélgica
dc.description.fil
Fil: Chen, Y.. Université de Liège; Bélgica
dc.description.fil
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Lemal, P.. Université de Liège; Bélgica
dc.description.fil
Fil: Gengler, N.. Université de Liège; Bélgica
dc.journal.title
Journal Of Animal Breeding And Genetics-zeitschrift Fur Tierzuchtung Und Zuchtungsbiologie
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/jbg.12890
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/jbg.12890
Archivos asociados