Artículo
On the structure of the diffusion distance induced by the fractional dyadic Laplacian
Acosta, Maria Florencia
; Aimar, Hugo Alejandro
; Gomez, Ivana Daniela
; Morana, Federico Maximiliano




Fecha de publicación:
03/2024
Editorial:
AGH University of Science and Technology
Revista:
Opuscula Mathematica
ISSN:
1232-9274
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this note we explore the structure of the diffusion metric of Coifman–Lafon determined by fractional dyadic Laplacians. The main result is that, for each t > 0, the diffusion metric is a function of the dyadic distance, given in R + by δ(x, y) = inf {|I| : I is a dyadic interval containing x and y}. Even if these functions of δ are not equivalent to δ, the families of balls are the same, to wit, the dyadic intervals.
Palabras clave:
DIFFUSION METRICS
,
DYADIC DIFFUSION
,
LAPLACIAN
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Acosta, Maria Florencia; Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Morana, Federico Maximiliano; On the structure of the diffusion distance induced by the fractional dyadic Laplacian; AGH University of Science and Technology; Opuscula Mathematica; 44; 2; 3-2024; 157-165
Compartir
Altmétricas