Artículo
LSTM network in bilateral teleoperation of a skid-steering robot
Slawiñski, Emanuel
; Rossomando, Francisco Guido
; Chicaiza Claudio, Fernando Alfonso
; Moreno Valenzuela, Javier; Mut, Vicente Antonio




Fecha de publicación:
10/2024
Editorial:
Elsevier Science
Revista:
Neurocomputing
ISSN:
0925-2312
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The paper analyses a control scheme aided by LSTM networks for the delayed bilateral teleoperation system of a skid-steering wheeled mobile robot. The strategy implemented at the local and remote sites combines a virtual force based on nonlinear impedance, nonlinear Proportional–Integral (PI) gains, spring-damper, and robust neural dynamics compensation, including a gradient-based adjustment law or critic-actor RL trained offline using the ADAM algorithm. To analyse the stated strategy, stability analysis is performed. A Lyapunov–Krasovskii functional is proposed for evaluation along the system trajectories to analyse the evolution of control errors and network errors. Human-in-the-loop simulations are conducted and evaluated as a case study to observe the responses of velocities and yaw rate errors, lateral velocity, and network parameters in the presence of time-varying delays, variable load, and different terrain frictions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Articulos de INSTITUTO DE AUTOMATICA
Citación
Slawiñski, Emanuel; Rossomando, Francisco Guido; Chicaiza Claudio, Fernando Alfonso; Moreno Valenzuela, Javier; Mut, Vicente Antonio; LSTM network in bilateral teleoperation of a skid-steering robot; Elsevier Science; Neurocomputing; 602; 128248; 10-2024; 1-12
Compartir
Altmétricas