Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mean-field solution of the neural dynamics in a Greenberg-Hastings model with excitatory and inhibitory units

Almeira, JoaquinIcon ; Grigera, Tomas SebastianIcon ; Mártin, Daniel AlejandroIcon ; Chialvo, Dante RenatoIcon ; Cannas, Sergio AlejandroIcon
Fecha de publicación: 07/2024
Editorial: American Physical Society
Revista: Physical Review E
ISSN: 2470-0045
e-ISSN: 2470-0053
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

We present a mean-field solution of the dynamics of a Greenberg-Hastings neural network with both excitatory and inhibitory units. We analyze the dynamical phase transitions that appear in the stationary state as the modelparameters are varied. Analytical solutions are compared with numerical simulations of the microscopic model defined on a fully connected network. We found that the stationary state of this system exhibits a first-orderdynamical phase transition (with the associated hysteresis) when the fraction of inhibitory units f is smaller than some critical value f t 1/2, even for a finite system. Moreover, any solution for f < 1/2 can be mapped to a solution for purely excitatory systems ( f = 0). In finite systems, when the system is dominated by inhibition ( f > f t ), the first-order transition is replaced by a pseudocritical one, namely a continuous crossover between regions of low and high activity that resembles the finite size behavior of a continuous phase transition order parameter. However, in the thermodynamic limit (i.e., infinite-system-size limit), we found that f t → 1/2 and the activity for the inhibition dominated case ( f f t ) becomes negligible for any value of the parameters, while the first-order transition between low- and high-activity phases for f < f t remains.
Palabras clave: NEURAL NETWORK , INHIBITORY NEURONS , MEAN FIELD
Ver el registro completo
 
Archivos asociados
Tamaño: 2.711Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258351
URL: https://link.aps.org/doi/10.1103/PhysRevE.110.014130
DOI: http://dx.doi.org/10.1103/PhysRevE.110.014130
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Almeira, Joaquin; Grigera, Tomas Sebastian; Mártin, Daniel Alejandro; Chialvo, Dante Renato; Cannas, Sergio Alejandro; Mean-field solution of the neural dynamics in a Greenberg-Hastings model with excitatory and inhibitory units; American Physical Society; Physical Review E; 110; 1; 7-2024; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES