Artículo
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago
; Maric, Tomislav
; Maric, Tomislav
Fecha de publicación:
08/2024
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Computers & Fluids
ISSN:
0045-7930
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].
Palabras clave:
Volume-of-fluid
,
Unstructured
,
Finite volume
,
High density ratios
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-23
Compartir
Altmétricas