Artículo
Quantum entropies of realistic states of a topological insulator
Fecha de publicación:
05/2024
Editorial:
Elsevier Science
Revista:
Physica E
ISSN:
1386-9477
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Nanowires of BiSe show topological states localized near the surface of the material. The topological nature of these states can be analyzed using well-known quantities. In this paper, we calculate the topological entropy suggested by Kitaev and Preskill for these states together with a new entropy based on a reduced density matrix that we propose as a measure to distinguish topological one-electron states. Our results show that the topological entropy is a constant independent of the parameters that characterize a topological state as its angular momentum, longitudinal wave vector, and radius of the nanowire. The new entropy is always larger for topological states than for normal ones, allowing the identification of the topological ones. We show how the reduced density matrices associated with both entropies are constructed from the pure state using positive maps and explicitly obtaining the Krauss operators.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Legnazzi, Nicolás; Osenda, Omar; Quantum entropies of realistic states of a topological insulator; Elsevier Science; Physica E; 159; 5-2024; 1-9
Compartir
Altmétricas