Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multistage Condensation Pathway Minimizes Hysteresis in Water Harvesting with Large-Pore Metal-Organic Frameworks

Zaragoza, Alberto; Factorovich, Matias HectorIcon ; Molinero, Valeria
Fecha de publicación: 01/2024
Editorial: American Chemical Society
Revista: Chemistry Of Materials
ISSN: 0897-4756
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Metal–organic frameworks (MOFs) have emerged as promising materials for atmospheric water harvesting (AWH). Large-pore MOFs provide high water capacity, but their significant hysteresis between sorption and desorption makes them unsuitable for AWH. Co2Cl2(BTDD) is a noteworthy exception. This MOF has large, 2.2 nm diameter one-dimensional pores and combines both record-high water capacity and minimal hysteresis, making it an excellent material for water capture in arid areas. Sorption reversibility in Co2Cl2(BTDD) has been attributed to continuous water uptake. However, the sharp adsorption/desorption in the isotherms supports a discontinuous first-order transition. Here, we use molecular simulations to compute the water adsorption and desorption pathways and isotherms in a Co2Cl2(BTDD) model, to elucidate how this MOF achieves reversibility despite its large pore size. The simulations reveal a multistage mechanism of discontinuous water uptake facilitated by spatial segregation of rows of hydrophilic metal sites bridged by ∼1 nm hydrophobic ligands. The multistage mechanism breaks the barrier of capillary condensation into smaller, easier to surmount ones, resulting in a facile process despite the sharp density discontinuity between confined liquid and vapor. Our results explain why exchanging Co2+ for Ni2+ or Cl– for F– in the MOF has minimal impact on the condensation and desorption pressures. On the other hand, we predict that a decrease in hydrophilicity of the MOF vertices would strongly increase the hysteresis. We expect that the relationships between spatial distribution of hydrophilic sites and hysteresis unraveled in this study will assist the design of water harvesting materials with maximal capacity and reversibility.
Palabras clave: condensation
Ver el registro completo
 
Archivos asociados
Tamaño: 4.000Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257890
URL: https://pubs.acs.org/doi/full/10.1021/acs.chemmater.3c02113
DOI: http://dx.doi.org/10.1021/acs.chemmater.3c02113
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Zaragoza, Alberto; Factorovich, Matias Hector; Molinero, Valeria; Multistage Condensation Pathway Minimizes Hysteresis in Water Harvesting with Large-Pore Metal-Organic Frameworks; American Chemical Society; Chemistry Of Materials; 36; 2; 1-2024; 708-719
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES