Artículo
Totally geodesic submanifolds in the manifold SPD of symmetric positive-definite real matrices
Fecha de publicación:
11/2024
Editorial:
Springer
Revista:
Information Geometry
ISSN:
2511-2481
e-ISSN:
2511-249X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper is a self-contained exposition of the geometry of symmetric positive-definitereal n×n matrices SPD(n), including necessary and sufficent conditions for a submanifold N ⊂ SPD(n) to be totally geodesic for the affine-invariant Riemannian metric.A non-linear projection x → π(x) on a totally geodesic submanifold is defined.This projection has the minimizing property with respect to the Riemannian metric:it maps an arbitrary point x ∈ SPD(n) to the unique closest element π(x) in thetotally geodesic submanifold for the distance defined by the affine-invariant Riemannian metric. Decompositions of the space SPD(n) follow, as well as variants of thepolar decomposition of non-singular matrices known as Mostow’s decompositions.Applications to decompositions of covariant matrices are mentioned.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Tumpach, Alice Barbara; Larotonda, Gabriel Andrés; Totally geodesic submanifolds in the manifold SPD of symmetric positive-definite real matrices; Springer; Information Geometry; 7; S2; 11-2024; 913-942
Compartir
Altmétricas