Artículo
Generalized inverses, ideals, and projectors in rings
Fecha de publicación:
04/2024
Editorial:
University of Nis
Revista:
Filomat
ISSN:
0354-5180
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The theory of generalized inverses of matrices and operators is closely connected with projections, i.e., idempotent (bounded) linear transformations. We show that a similar situation occurs in any associative ring R with a unit 1 , 0. We prove that generalized inverses in R are related to idempotent group endomorphisms ρ : R → R, called projectors. We use these relations to give characterizations and existence conditions for {1}, {2}, and {1, 2}-inverses with any given principal/annihilator ideals. As a consequence, we obtain sufficient conditions for any right/left ideal of R to be a principal or an annihilator ideal of an idempotent element of R. We also study some particular generalized inverses: Drazin and (b, c) inverses, and (e, f) Moore-Penrose, e-core, f-dual core, w-core, dual v-core, right w-core, left dual v-core, and (p, q) inverses in rings with involution.
Palabras clave:
GENERALIZED INVERSE
,
RING
,
IDEAL
,
DIRECT SUM
,
PROJECTOR
,
INVOLUTION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Morillas, Patricia Mariela; Generalized inverses, ideals, and projectors in rings; University of Nis; Filomat; 38; 19; 4-2024; 6715-6741
Compartir
Altmétricas