Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Systematic analysis of jellyfish galaxy candidates in Fornax, Antlia, and Hydra from the S-PLUS survey: a self-supervised visual identification aid

Gondhalekar, Yash; Chies Santos, Ana L.; de Souza, Rafael S.; Queiroz, Carolina; Reis Lopes, AmandaIcon ; Ferrari, Fabricio; Azevedo, Gabriel M.; Monteiro Pereira, Hellen; Overzier, Roderik; Smith Castelli, Analia VivianaIcon ; Jaffé, Yara L.; Haack, Rodrigo FacundoIcon ; Rahna, P. T.; Shen, Shiyin; Mu, Zihao; Lima Dias, Ciria; Barbosa, Carlos E.; Oliveira Schwarz, Gustavo B.; Riffel, Rogerio; Jimenez Teja, Yolanda; Grossi, Marco Octavio; Mendes de Oliveira, Claudia Lucia; Schoenell, William; Ribeiro, Thiago; Kanaan, Antonio
Fecha de publicación: 07/2024
Editorial: Wiley Blackwell Publishing, Inc
Revista: Monthly Notices of the Royal Astronomical Society
ISSN: 0035-8711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

We study 51 jellyfish galaxy candidates in the Fornax, Antlia, and Hydra clusters. These candidates are identified using the JClass scheme based on the visual classification of wide-field, twelve-band optical images obtained from the Southern Photometric Local Universe Survey. A comprehensive astrophysical analysis of the jellyfish (JClass > 0), non-jellyfish (JClass = 0), and independently organized control samples is undertaken. We develop a semi-automated pipeline using self-supervised learning and similarity search to detect jellyfish galaxies. The proposed framework is designed to assist visual classifiers by providing more reliable JClasses for galaxies. We find that jellyfish candidates exhibit a lower Gini coefficient, higher entropy, and a lower 2D Sérsic index as the jellyfish features in these galaxies become more pronounced. Jellyfish candidates show elevated star formation rates (including contributions from the main body and tails) by ∼ 1.75 dex, suggesting a significant increase in the SFR caused by the ram-pressure stripping phenomenon. Galaxies in the Antlia and Fornax clusters preferentially fall towards the cluster´s centre, whereas only a mild preference is observed for Hydra galaxies. Our self-supervised pipeline, applied in visually challenging cases, offers two main advantages: it reduces human visual biases and scales effectively for large data sets. This versatile framework promises substantial enhancements in morphology studies for future galaxy image surveys.
Palabras clave: S-PLUS , JELLYFISH , GALAXIES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.809Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257844
URL: https://academic.oup.com/mnras/article/532/1/270/7689212
DOI: http://dx.doi.org/10.1093/mnras/stae1410
Colecciones
Articulos(IALP)
Articulos de INST.DE ASTROFISICA LA PLATA
Citación
Gondhalekar, Yash; Chies Santos, Ana L.; de Souza, Rafael S.; Queiroz, Carolina; Reis Lopes, Amanda; et al.; Systematic analysis of jellyfish galaxy candidates in Fornax, Antlia, and Hydra from the S-PLUS survey: a self-supervised visual identification aid; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 532; 1; 7-2024; 270-294
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES