Artículo
Inequalities for linear combinations of orthogonal projections and applications
Fecha de publicación:
08/2024
Editorial:
Springer
Revista:
Journal of Pseudo-Differential Operators and Applications
ISSN:
1662-9981
e-ISSN:
1662-999X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present various inequalities regarding the linear combinations oforthogonal projections. These results aim to generalize and refine well-known inequalities,such as those due to Buzano and Ostrowski. Additionally,we investigate a specificcase of these linear combinations and introduce new refinements of the Cauchy–Schwarz inequality. Furthermore, we establish some findings related to the covarianceand variance of bounded linear operators. Moreover, as applications of some of ourresults, we establish several inequalities involving the product of three operators, oneof which is a linear combination of an orthogonal projection and the identity operator.Finally, we introduce a new positive operator construction in terms of an orthogonalprojection and the identity operator, and we derive some norms and numerical radiusinequalities involving it.
Palabras clave:
Orthogonal projections
,
Buzano inequality
,
Numerical radius
,
Operator norm
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Altwaijry, Najla; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Inequalities for linear combinations of orthogonal projections and applications; Springer; Journal of Pseudo-Differential Operators and Applications; 15; 3; 8-2024; 1-25
Compartir
Altmétricas