Mostrar el registro sencillo del ítem
dc.contributor.author
Angelini, Julia

dc.contributor.author
Cervigni, Gerardo Domingo Lucio

dc.contributor.author
Quaglino, Marta Beatriz

dc.date.available
2025-03-31T15:52:57Z
dc.date.issued
2024-05
dc.identifier.citation
Angelini, Julia; Cervigni, Gerardo Domingo Lucio; Quaglino, Marta Beatriz; New imputation methodologies for genotype-by-environment data: an extensive study of properties of estimators; Springer; Euphytica; 220; 6; 5-2024; 1-17
dc.identifier.issn
0014-2336
dc.identifier.uri
http://hdl.handle.net/11336/257716
dc.description.abstract
The site regression model (SREG) is utilized by plant breeders for analyzing multi-environment trials (MET) to examine the relationships among test environments, genotypes (G), and genotype-by-environment interactions (GE). SREG explores a matrix of G and GE by performing a singular value decomposition on the residuals matrix from a one-way ANOVA, requiring complete data. As missing values are common in MET, we propose two new imputation methods that implement an Expectation Maximization algorithm to fit the SREG model. To evaluate the impact on SREG model parameter estimation of these proposed methods and other competing imputation methods available, we conducted two studies using different approaches. One study involved simulated data while the other used a real dataset. In both studies, different measures to verify whether the joint effect of G plus GE is altered by imputation of data, and the reproducibility of missing data were evaluated. We also incorporated situations not commonly addressed in the literature, such as non-random structures of missing values and big data situation. The proposed procedures provided estimators with good performance, maintaining superiority in several aspects studied, even when the competing imputation methods did not achieve convergence. Therefore, the new methods enabled incomplete MET data to be effectively analysed by a SREG model.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
imputation methods
dc.subject
missing values
dc.subject
multivariate methods
dc.subject
plant breeders
dc.subject.classification
Otros Tópicos Biológicos

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
New imputation methodologies for genotype-by-environment data: an extensive study of properties of estimators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-28T11:45:27Z
dc.journal.volume
220
dc.journal.number
6
dc.journal.pagination
1-17
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Quaglino, Marta Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina
dc.journal.title
Euphytica

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10681-024-03344-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10681-024-03344-z
Archivos asociados