Mostrar el registro sencillo del ítem

dc.contributor.author
Angelini, Julia  
dc.contributor.author
Cervigni, Gerardo Domingo Lucio  
dc.contributor.author
Quaglino, Marta Beatriz  
dc.date.available
2025-03-31T15:52:57Z  
dc.date.issued
2024-05  
dc.identifier.citation
Angelini, Julia; Cervigni, Gerardo Domingo Lucio; Quaglino, Marta Beatriz; New imputation methodologies for genotype-by-environment data: an extensive study of properties of estimators; Springer; Euphytica; 220; 6; 5-2024; 1-17  
dc.identifier.issn
0014-2336  
dc.identifier.uri
http://hdl.handle.net/11336/257716  
dc.description.abstract
The site regression model (SREG) is utilized by plant breeders for analyzing multi-environment trials (MET) to examine the relationships among test environments, genotypes (G), and genotype-by-environment interactions (GE). SREG explores a matrix of G and GE by performing a singular value decomposition on the residuals matrix from a one-way ANOVA, requiring complete data. As missing values are common in MET, we propose two new imputation methods that implement an Expectation Maximization algorithm to fit the SREG model. To evaluate the impact on SREG model parameter estimation of these proposed methods and other competing imputation methods available, we conducted two studies using different approaches. One study involved simulated data while the other used a real dataset. In both studies, different measures to verify whether the joint effect of G plus GE is altered by imputation of data, and the reproducibility of missing data were evaluated. We also incorporated situations not commonly addressed in the literature, such as non-random structures of missing values and big data situation. The proposed procedures provided estimators with good performance, maintaining superiority in several aspects studied, even when the competing imputation methods did not achieve convergence. Therefore, the new methods enabled incomplete MET data to be effectively analysed by a SREG model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
imputation methods  
dc.subject
missing values  
dc.subject
multivariate methods  
dc.subject
plant breeders  
dc.subject.classification
Otros Tópicos Biológicos  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
New imputation methodologies for genotype-by-environment data: an extensive study of properties of estimators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-28T11:45:27Z  
dc.journal.volume
220  
dc.journal.number
6  
dc.journal.pagination
1-17  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina  
dc.description.fil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina  
dc.description.fil
Fil: Quaglino, Marta Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina  
dc.journal.title
Euphytica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10681-024-03344-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10681-024-03344-z