Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Category Membership as a Criterion to Evaluate the Soundness of Analogical Inferences

Minervino, Ricardo AdrianIcon ; Margni, Adrián GuillermoIcon ; Tavernini, Lucía MicaelaIcon ; Trench, Juan MaximoIcon
Fecha de publicación: 12/2023
Editorial: Seoul National University. Institute for Cognitive Science
Revista: Journal of Cognitive Science
e-ISSN: 1598-2327
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Psicología

Resumen

The standard approach to analogical reasoning posits that the mechanism that people employ to ensure the soundness of analogical inferences consists in copying unmapped individual explicit base relations, substituting corresponding source entities with target entities, and generating slots for base entities that were unmapped. Alternatively, we contend that when the gist of the information to be transferred is better captured by relational categories than by explicit individual relations, people resort to searching for target exemplars of the base relational categories, disregarding similarity between relations. Experiment 1 revealed that for this kind of analogy, inferences that did not resemble the base analog in terms of explicit individual relations but were built on exemplars of the base relational category were judged as sounder than inferences that matched the base analog in terms of relations but not in terms of a common category. Within the framework of the proposed approach, we postulated that inference evaluation also depends on the similarity between the base and target exemplars on relevant aspects. Experiment 2 revealed that inferences were judged as sounder when the exemplars upon which the inferences were built matched the base exemplars along salient dimensions of the relational category they shared. The cognitive mechanisms unveiled by the current results suggest new avenues along which current theorization and modeling of analogical inference may develop.
Palabras clave: Analogy , Inference , Relational categories , Similarity , Evaluation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.388Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257668
URL: https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART003040760
DOI: http://doi.org/10.17791/jcs.2023.24.4.401
Colecciones
Articulos(IPEHCS)
Articulos de INSTITUTO PATAGONICO DE ESTUDIOS DE HUMANIDADES Y CIENCIAS SOCIALES
Citación
Minervino, Ricardo Adrian; Margni, Adrián Guillermo; Tavernini, Lucía Micaela; Trench, Juan Maximo; Category Membership as a Criterion to Evaluate the Soundness of Analogical Inferences; Seoul National University. Institute for Cognitive Science; Journal of Cognitive Science; 24; 4; 12-2023; 401-436
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES