Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Computational prediction of crucial genes involved in gonorrhea infection and neoplastic cell transformation: A multiomics approach

Ravindranath, B. S.; Ananya, G.; Hema Kumar, C.; Ramirez, DarioIcon ; Gomez-Mejiba, Sandra EstherIcon
Fecha de publicación: 08/2024
Editorial: Academic Press Ltd - Elsevier Science Ltd
Revista: Microbial Pathogenesis
ISSN: 0882-4010
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Patología

Resumen

Neisseria gonorrheae, the causative agent of genitourinary infections, has been associated with asymptomatic or recurrent infections and has the potential to form biofilms and induce inflammation and cell transformation. Herein, we aimed to use computational analysis to predict novel associations between chronic inflammation caused by gonorrhea infection and neoplastic transformation. Prioritization and gene enrichment strategies based on virulence and resistance genes utilizing essential genes from the DEG and PANTHER databases, respectively, were performed. Using the STRING database, protein‒protein interaction networks were constructed with 55 nodes of bacterial proteins and 72 nodes of proteins involved in the host immune response. MCODE and cytoHubba were used to identify 12 bacterial hub proteins (murA, murB, murC, murD, murE, purN, purL, thyA, uvrB, kdsB, lpxC, and ftsH) and 19 human hub proteins, of which TNF, STAT3 and AKT1 had high significance. The PPI networks are based on the connectivity degree (K), betweenness centrality (BC), and closeness centrality (CC) values. Hub genes are vital for cell survival and growth, and their significance as potential drug targets is discussed. This computational study provides a comprehensive understanding of inflammation and carcinogenesis pathways that are activated during gonorrhea infection.
Palabras clave: GONORRHEA , HUB GENES , CELL TRANSFORMATION , COMPUTATIONAL
Ver el registro completo
 
Archivos asociados
Tamaño: 1.161Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257392
URL: https://linkinghub.elsevier.com/retrieve/pii/S0882401024002377
DOI: http://dx.doi.org/10.1016/j.micpath.2024.106770
Colecciones
Articulos(IMIBIO-SL)
Articulos de INST. MULTIDICIPLINARIO DE INV. BIO. DE SAN LUIS
Citación
Ravindranath, B. S.; Ananya, G.; Hema Kumar, C.; Ramirez, Dario; Gomez-Mejiba, Sandra Esther; Computational prediction of crucial genes involved in gonorrhea infection and neoplastic cell transformation: A multiomics approach; Academic Press Ltd - Elsevier Science Ltd; Microbial Pathogenesis; 193; 8-2024; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES