Mostrar el registro sencillo del ítem

dc.contributor.author
Woods, Ethan  
dc.contributor.author
Rondon Verrio, Vanesa  
dc.contributor.author
Qiu, Yaojing  
dc.contributor.author
Berlin, Perry  
dc.contributor.author
Clauser, Nicolás Martín  
dc.contributor.author
Sagues, William Joe  
dc.date.available
2025-03-27T09:50:49Z  
dc.date.issued
2024-01  
dc.identifier.citation
Woods, Ethan; Rondon Verrio, Vanesa; Qiu, Yaojing; Berlin, Perry; Clauser, Nicolás Martín; et al.; Biomass composting with gaseous carbon dioxide capture; Royal Society of Chemistry; RSC Sustainability; 2; 3; 1-2024; 621-625  
dc.identifier.issn
2753-8125  
dc.identifier.uri
http://hdl.handle.net/11336/257307  
dc.description.abstract
Biomass carbon removal and storage (BiCRS) technologies must scale rapidly to mitigate climate change via the removal of carbon dioxide (CO2) from the atmosphere. BiCRS technologies passively concentrate atmospheric CO2 and thus greatly reduce energy demands for atmospheric carbon removal, relative to direct air capture (DAC) technologies. Composting with gaseous CO2 capture is an overlooked BiCRS technology with significant potential for atmospheric carbon removal. For the first time, we demonstrate the capture of high purity gaseous CO2 from biomass composting. Biomass is composted in simple, closed reactors with automated cycling of air or oxy-fuel to generate gaseous streams with CO2 concentrations varying between 18 and 95%, which are significantly higher than the CO2 concentration of air (∼0.04%); the minimum thermodynamic energy needed for CO2 capture from composting is 72–98% lower than that for the capture of CO2 directly from the air. Genomic data indicate microbial diversity decreases with the use of oxy-fuel relative to air. Globally, the composting of food waste could capture 0.3–1.0 billion tonnes of biogenic CO2 per year, and the inclusion of other biomass feedstocks could increase the total capture rate to more than 3.5 billion tonnes per year.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Biorefinery  
dc.subject
Biomass  
dc.subject
Composting  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Biomass composting with gaseous carbon dioxide capture  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-26T19:45:51Z  
dc.journal.volume
2  
dc.journal.number
3  
dc.journal.pagination
621-625  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Woods, Ethan. North Carolina State University; Estados Unidos  
dc.description.fil
Fil: Rondon Verrio, Vanesa. North Carolina State University; Estados Unidos  
dc.description.fil
Fil: Qiu, Yaojing. North Carolina State University; Estados Unidos  
dc.description.fil
Fil: Berlin, Perry. North Carolina State University; Estados Unidos  
dc.description.fil
Fil: Clauser, Nicolás Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina  
dc.description.fil
Fil: Sagues, William Joe. North Carolina State University; Estados Unidos  
dc.journal.title
RSC Sustainability  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2024/su/d3su00411b  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/d3su00411b