Mostrar el registro sencillo del ítem

dc.contributor.author
Setevich, Cristian F.  
dc.contributor.author
Larrondo, Susana Adelina  
dc.date.available
2025-03-26T12:29:28Z  
dc.date.issued
2024-05  
dc.identifier.citation
Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-21  
dc.identifier.issn
2352-4928  
dc.identifier.uri
http://hdl.handle.net/11336/257178  
dc.description.abstract
In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
sofc  
dc.subject
resistor networks  
dc.subject
miec  
dc.subject
simulation  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-25T20:46:44Z  
dc.journal.volume
39  
dc.journal.pagination
1-21  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
amsterdam  
dc.description.fil
Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina  
dc.description.fil
Fil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; Argentina  
dc.journal.title
Materials Today Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492824012406  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mtcomm.2024.109259