Mostrar el registro sencillo del ítem
dc.contributor.author
Setevich, Cristian F.
dc.contributor.author
Larrondo, Susana Adelina

dc.date.available
2025-03-26T12:29:28Z
dc.date.issued
2024-05
dc.identifier.citation
Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-21
dc.identifier.issn
2352-4928
dc.identifier.uri
http://hdl.handle.net/11336/257178
dc.description.abstract
In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
sofc
dc.subject
resistor networks
dc.subject
miec
dc.subject
simulation
dc.subject.classification
Física de los Materiales Condensados

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-25T20:46:44Z
dc.journal.volume
39
dc.journal.pagination
1-21
dc.journal.pais
Países Bajos

dc.journal.ciudad
amsterdam
dc.description.fil
Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
dc.description.fil
Fil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; Argentina
dc.journal.title
Materials Today Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492824012406
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mtcomm.2024.109259
Archivos asociados