Artículo
Simple modules of small quantum groups at dihedral groups
Fecha de publicación:
02/2024
Editorial:
Universität Bielefeld
Revista:
Documenta Mathematica
e-ISSN:
1431-0643
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Based on previous results on the classification of finite-dimensional Nichols algebras over dihedral groups and the characterization of simple modules of Drinfeld doubles, we compute the irreducible characters of the Drinfeld doubles of bosonizations of finite-dimensional Nichols algebras over the dihedral groups D4t with t 3. To this end, we develop new techniques that can be applied to Nichols algebras over any Hopf algebra. Namely, we explain how to construct recursively irreducible representations when the Nichols algebra is generated by a decomposable module, and show that the highest-weight of minimum degree in a Verma module determines its socle. We also prove that tensoring a simple module by a rigid simple module gives a semisimple module.
Palabras clave:
HOPF ALGEBRAS
,
REPRESENTATION THEORY
,
NICHOLS ALGEBRAS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
García, Gastón Andrés; Vay, Cristian Damian; Simple modules of small quantum groups at dihedral groups; Universität Bielefeld; Documenta Mathematica; 29; 1; 2-2024; 1-38
Compartir
Altmétricas