Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain

Luchi, Adriano MartínIcon ; Gómez Chávez, José LeonardoIcon ; Villafañe, Roxana NoeliaIcon ; Conti, German Andrés; Perez, Ernesto RafaelIcon ; Angelina, Emilio LuisIcon ; Peruchena, Nelida MariaIcon
Fecha de publicación: 12/2022
Editorial: CHEMRxiv
Revista: ChemRxiv
e-ISSN: 2573-2293
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioquímica y Biología Molecular

Resumen

The idea behind virtual screening is to first test compounds computationally in order to reduce the number of compounds that need to be screened experimentally, thus reducing the time and cost of physical experiments. Molecular docking is the most popular virtual screening technique, it predicts the binding of candidate compounds to the protein target by modeling the interactions at the binding pocket. Despite being widely used, docking accuracy is often low due to the difficulty of modeling inherently complex biological systems. On the other hand, state of the art deep neural networks, like Graph Convolutional Networks (GCNs) are able to capture the complex non-linear relationships between structural and biological data, but they lack the interpretability of structure-based modeling. In this work we took advantage of the activity data from a quantitative High Throughput Screen (HTS) of ~200K compounds against Cruzain (Cz) to retrospectively evaluate the ability of a docking algorithm and a Graph Convolutional Network for prioritizing the active compounds from the dataset. We then propose strategies to combine both techniques in a single virtual screening pipeline in order to exploit their orthogonal benefits. By plugging in the atomic embeddings learned by the GCN into the docking algorithm by means of pharmacophoric restraints, docking ability to retrieve the active ligands was enhanced. Moreover, by applying the GCN as a pre-docking filter, the compound’s library was enriched in active molecules and subsequent docking of the filtered library achieved significantly higher hit rates. This work aims to be a proof of concept of the usefulness of combination strategies involving deep learning and classical molecular docking techniques, in the context of drug discovery.
Palabras clave: GRAPH NEURAL NETWORK , DOCKING , CHAGAS DISEASE-CRUZAIN , STRUCTURE /LIGAND BASED VIRTUAL SCREANING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.943Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257076
URL: https://chemrxiv.org/engage/chemrxiv/article-details/63a216b2dadddcb60195aecf
DOI: http://dx.doi.org/10.26434/chemrxiv-2022-btz77
Colecciones
Articulos(CCT - NORDESTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Luchi, Adriano Martín; Gómez Chávez, José Leonardo; Villafañe, Roxana Noelia; Conti, German Andrés; Perez, Ernesto Rafael; et al.; Graph neural networks and molecular docking as two complementary approaches for virtual screening: a case study on Cruzain; CHEMRxiv; ChemRxiv; 12-2022; 1-39
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES