Mostrar el registro sencillo del ítem

dc.contributor.author
Zalazar, Ivan Ariel  
dc.contributor.author
Alzamendi, Gabriel Alejandro  
dc.contributor.author
Zañartu, Matías  
dc.contributor.author
Schlotthauer, Gaston  
dc.date.available
2025-03-25T14:49:41Z  
dc.date.issued
2024-12  
dc.identifier.citation
Zalazar, Ivan Ariel; Alzamendi, Gabriel Alejandro; Zañartu, Matías; Schlotthauer, Gaston; Maximum Correntropy Linear Prediction for Voice Inverse Filtering: Theoretical Framework and Practical Implementation; Institute of Electrical and Electronics Engineers; IEEE Transactions on Audio, Speech and Language Processing; 33; 12-2024; 152-162  
dc.identifier.issn
2998-4173  
dc.identifier.uri
http://hdl.handle.net/11336/257064  
dc.description.abstract
Voice inverse filtering methods aim at noninvasively estimating the glottal source information from the voice signal. These inverse filtering strategies typically rely on parametric models and variants of linear prediction for tuning the vocal tract filter. Weighted linear prediction schemes have proved to be the best performing for inverse filtering applications. However, the linear prediction and its variants are sensitive to the impulse-like acoustic excitations triggered by the abrupt glottal closure during voiced phonation. The present study examines the maximum correntropy criterion-based linear prediction (MCLP) for voice inverse filtering. Correntropy is a nonlinear, localized similarity measure inherently insensitive to peak-like outliers. Here, a theoretical framework is established for studying the properties of correntropy relevant for voice inverse filtering and for developing an algorithm to estimate vocal tract filter coefficients. The proposed algorithm results in a robust weighted linear prediction, where a correntropy weighting function is adjusted iteratively by a data-driven optimization scheme. The effects of correntropy kernel parameters on the performance of the MCLP method are analyzed. Characterization of the MCLP method for voice inverse filtering is addressed based on synthetic and natural sustained vowel signals. Simulations show that MCLP naturally overweights samples in the glottal closed phase, where the phonation model is more accurate. MCLP does not require prior information about the glottal instants, nor applying a predefined weighting function. Results show that MCLP performs similarly or better than other well-established inverse filtering methods based on weighted linear prediction.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Correntropy  
dc.subject
Weighted linear prediction  
dc.subject
Voice inverse filtering  
dc.subject
Glottal source estimation  
dc.subject
Closed phase analysis  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Maximum Correntropy Linear Prediction for Voice Inverse Filtering: Theoretical Framework and Practical Implementation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-25T13:24:48Z  
dc.journal.volume
33  
dc.journal.pagination
152-162  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Zalazar, Ivan Ariel. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Zañartu, Matías. Universidad Tecnica Federico Santa Maria.; Chile  
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.journal.title
IEEE Transactions on Audio, Speech and Language Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10778313/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2024.3512187