Mostrar el registro sencillo del ítem
dc.contributor.author
Zalazar, Ivan Ariel

dc.contributor.author
Alzamendi, Gabriel Alejandro

dc.contributor.author
Zañartu, Matías
dc.contributor.author
Schlotthauer, Gaston

dc.date.available
2025-03-25T14:49:41Z
dc.date.issued
2024-12
dc.identifier.citation
Zalazar, Ivan Ariel; Alzamendi, Gabriel Alejandro; Zañartu, Matías; Schlotthauer, Gaston; Maximum Correntropy Linear Prediction for Voice Inverse Filtering: Theoretical Framework and Practical Implementation; Institute of Electrical and Electronics Engineers; IEEE Transactions on Audio, Speech and Language Processing; 33; 12-2024; 152-162
dc.identifier.issn
2998-4173
dc.identifier.uri
http://hdl.handle.net/11336/257064
dc.description.abstract
Voice inverse filtering methods aim at noninvasively estimating the glottal source information from the voice signal. These inverse filtering strategies typically rely on parametric models and variants of linear prediction for tuning the vocal tract filter. Weighted linear prediction schemes have proved to be the best performing for inverse filtering applications. However, the linear prediction and its variants are sensitive to the impulse-like acoustic excitations triggered by the abrupt glottal closure during voiced phonation. The present study examines the maximum correntropy criterion-based linear prediction (MCLP) for voice inverse filtering. Correntropy is a nonlinear, localized similarity measure inherently insensitive to peak-like outliers. Here, a theoretical framework is established for studying the properties of correntropy relevant for voice inverse filtering and for developing an algorithm to estimate vocal tract filter coefficients. The proposed algorithm results in a robust weighted linear prediction, where a correntropy weighting function is adjusted iteratively by a data-driven optimization scheme. The effects of correntropy kernel parameters on the performance of the MCLP method are analyzed. Characterization of the MCLP method for voice inverse filtering is addressed based on synthetic and natural sustained vowel signals. Simulations show that MCLP naturally overweights samples in the glottal closed phase, where the phonation model is more accurate. MCLP does not require prior information about the glottal instants, nor applying a predefined weighting function. Results show that MCLP performs similarly or better than other well-established inverse filtering methods based on weighted linear prediction.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Correntropy
dc.subject
Weighted linear prediction
dc.subject
Voice inverse filtering
dc.subject
Glottal source estimation
dc.subject
Closed phase analysis
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Maximum Correntropy Linear Prediction for Voice Inverse Filtering: Theoretical Framework and Practical Implementation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-25T13:24:48Z
dc.journal.volume
33
dc.journal.pagination
152-162
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Zalazar, Ivan Ariel. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.description.fil
Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.description.fil
Fil: Zañartu, Matías. Universidad Tecnica Federico Santa Maria.; Chile
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.journal.title
IEEE Transactions on Audio, Speech and Language Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10778313/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2024.3512187
Archivos asociados