Mostrar el registro sencillo del ítem

dc.contributor.author
Useche, Jairo  
dc.contributor.author
Pagnola, Marcelo Rubén  
dc.date.available
2025-03-25T10:24:44Z  
dc.date.issued
2024-05  
dc.identifier.citation
Useche, Jairo; Pagnola, Marcelo Rubén; Vibration analysis of functionally graded epoxy/graphene composite plates using the Boundary Element Method and new micromechanical model; Taylor & Francis; Mechanics Of Advanced Materials And Structures; 32; 5; 5-2024; 923-933  
dc.identifier.issn
1537-6494  
dc.identifier.uri
http://hdl.handle.net/11336/256935  
dc.description.abstract
This paper studies the free vibration and harmonic response of Functionally Graded graphene/Epoxy composite plates, considering the First Order Shear Deformation Plate Theory. The weight fraction of graphene variation along the thickness direction with graphene homogeneous dispersed in a polymer matrix. The effective Young Modulus of the plate is predicted by a new micro-mechanical model. The model includes the aspect ratio and weight fraction of nanoplatelets embedded into the matrix. The modal and harmonic of Graphene/Epoxy plates are obtained by the Boundary Element Method formulation for composite plates. The Young modulus calculatedfrom the proposed micro-mechanical model highly agrees with those obtained from experimental results reported in the literature. Results demonstrate a high correlation of the micromechanical model with experimental results and other analytical models. Graphene weight fraction and ratio aspect increase the effective Young modulus of the composite. Boundary Element resultsshow high agreement with Finite Element solutions. Numerical results for modal and harmonic analysis show concentrating graphene near the top and bottom surfaces of the plate is the most effective way to reinforce the plate for increased natural frequencies. The results demonstrate the BEM formulation and micromechanical model can be used as reliable engineering toolsfor the vibrational analysis of functionally grade graphene composite plates.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FUNCITIONALLY GRADED MATERIALS  
dc.subject
COMPOSITE PLATES  
dc.subject
GRAPHENE NANOPLATELETS  
dc.subject
MICROMECHANICAL MODEL  
dc.subject
BOUNDARY ELEMENT METHOD  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Vibration analysis of functionally graded epoxy/graphene composite plates using the Boundary Element Method and new micromechanical model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-20T11:33:33Z  
dc.journal.volume
32  
dc.journal.number
5  
dc.journal.pagination
923-933  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Useche, Jairo. Universidad Tecnologica de Bolivar; Colombia  
dc.description.fil
Fil: Pagnola, Marcelo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina  
dc.journal.title
Mechanics Of Advanced Materials And Structures  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/eprint/SXWTDSJ7ABVVQTX92YSV/full?target=10.1080/15376494.2024.2357264  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/15376494.2024.2357264