Mostrar el registro sencillo del ítem
dc.contributor.author
Useche, Jairo
dc.contributor.author
Pagnola, Marcelo Rubén

dc.date.available
2025-03-25T10:24:44Z
dc.date.issued
2024-05
dc.identifier.citation
Useche, Jairo; Pagnola, Marcelo Rubén; Vibration analysis of functionally graded epoxy/graphene composite plates using the Boundary Element Method and new micromechanical model; Taylor & Francis; Mechanics Of Advanced Materials And Structures; 32; 5; 5-2024; 923-933
dc.identifier.issn
1537-6494
dc.identifier.uri
http://hdl.handle.net/11336/256935
dc.description.abstract
This paper studies the free vibration and harmonic response of Functionally Graded graphene/Epoxy composite plates, considering the First Order Shear Deformation Plate Theory. The weight fraction of graphene variation along the thickness direction with graphene homogeneous dispersed in a polymer matrix. The effective Young Modulus of the plate is predicted by a new micro-mechanical model. The model includes the aspect ratio and weight fraction of nanoplatelets embedded into the matrix. The modal and harmonic of Graphene/Epoxy plates are obtained by the Boundary Element Method formulation for composite plates. The Young modulus calculatedfrom the proposed micro-mechanical model highly agrees with those obtained from experimental results reported in the literature. Results demonstrate a high correlation of the micromechanical model with experimental results and other analytical models. Graphene weight fraction and ratio aspect increase the effective Young modulus of the composite. Boundary Element resultsshow high agreement with Finite Element solutions. Numerical results for modal and harmonic analysis show concentrating graphene near the top and bottom surfaces of the plate is the most effective way to reinforce the plate for increased natural frequencies. The results demonstrate the BEM formulation and micromechanical model can be used as reliable engineering toolsfor the vibrational analysis of functionally grade graphene composite plates.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FUNCITIONALLY GRADED MATERIALS
dc.subject
COMPOSITE PLATES
dc.subject
GRAPHENE NANOPLATELETS
dc.subject
MICROMECHANICAL MODEL
dc.subject
BOUNDARY ELEMENT METHOD
dc.subject.classification
Nano-materiales

dc.subject.classification
Nanotecnología

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Vibration analysis of functionally graded epoxy/graphene composite plates using the Boundary Element Method and new micromechanical model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-20T11:33:33Z
dc.journal.volume
32
dc.journal.number
5
dc.journal.pagination
923-933
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Useche, Jairo. Universidad Tecnologica de Bolivar; Colombia
dc.description.fil
Fil: Pagnola, Marcelo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long". Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías y Ciencias de la Ingeniería "Hilario Fernández Long"; Argentina
dc.journal.title
Mechanics Of Advanced Materials And Structures

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/eprint/SXWTDSJ7ABVVQTX92YSV/full?target=10.1080/15376494.2024.2357264
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/15376494.2024.2357264
Archivos asociados