Mostrar el registro sencillo del ítem
dc.contributor.author
Ergon, Mattias
dc.contributor.author
Lundqvist, Peter
dc.contributor.author
Fransson, Claes
dc.contributor.author
Kuncarayakti, Hanindyo
dc.contributor.author
Das, Kaustav K.
dc.contributor.author
De, Kishalay
dc.contributor.author
Ferrari, Lucía

dc.contributor.author
Fremling, Christoffer
dc.contributor.author
Medler, Kyle
dc.contributor.author
Maeda, Keiichi
dc.contributor.author
Pastorello, Andrea
dc.contributor.author
Sollerman, Jesper
dc.contributor.author
Stritzinger, Maximilian

dc.date.available
2025-03-21T15:11:01Z
dc.date.issued
2024-03
dc.identifier.citation
Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-28
dc.identifier.issn
0004-6361
dc.identifier.uri
http://hdl.handle.net/11336/256846
dc.description.abstract
We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
EDP Sciences

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Supernovae: individual: SN 2020acat
dc.subject
Supernovae: general
dc.subject
Radiative transfer
dc.subject.classification
Astronomía

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-20T14:25:42Z
dc.journal.volume
683
dc.journal.number
A241
dc.journal.pagination
1-28
dc.journal.pais
Francia

dc.journal.ciudad
París
dc.description.fil
Fil: Ergon, Mattias. Stockholms Universitet; Suecia
dc.description.fil
Fil: Lundqvist, Peter. Stockholms Universitet; Suecia
dc.description.fil
Fil: Fransson, Claes. Stockholms Universitet; Suecia
dc.description.fil
Fil: Kuncarayakti, Hanindyo. University of Turku; Finlandia
dc.description.fil
Fil: Das, Kaustav K.. California Institute of Technology; Estados Unidos
dc.description.fil
Fil: De, Kishalay. Massachusetts Institute of Technology; Estados Unidos
dc.description.fil
Fil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.description.fil
Fil: Fremling, Christoffer. California Institute of Technology; Estados Unidos
dc.description.fil
Fil: Medler, Kyle. Liverpool John Moores University; Reino Unido
dc.description.fil
Fil: Maeda, Keiichi. Kyoto University; Japón
dc.description.fil
Fil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; Italia
dc.description.fil
Fil: Sollerman, Jesper. Stockholms Universitet; Suecia
dc.description.fil
Fil: Stritzinger, Maximilian. University Aarhus; Dinamarca
dc.journal.title
Astronomy and Astrophysics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202346718
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/0004-6361/202346718
Archivos asociados