Mostrar el registro sencillo del ítem

dc.contributor.author
Ergon, Mattias  
dc.contributor.author
Lundqvist, Peter  
dc.contributor.author
Fransson, Claes  
dc.contributor.author
Kuncarayakti, Hanindyo  
dc.contributor.author
Das, Kaustav K.  
dc.contributor.author
De, Kishalay  
dc.contributor.author
Ferrari, Lucía  
dc.contributor.author
Fremling, Christoffer  
dc.contributor.author
Medler, Kyle  
dc.contributor.author
Maeda, Keiichi  
dc.contributor.author
Pastorello, Andrea  
dc.contributor.author
Sollerman, Jesper  
dc.contributor.author
Stritzinger, Maximilian  
dc.date.available
2025-03-21T15:11:01Z  
dc.date.issued
2024-03  
dc.identifier.citation
Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-28  
dc.identifier.issn
0004-6361  
dc.identifier.uri
http://hdl.handle.net/11336/256846  
dc.description.abstract
We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
EDP Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Supernovae: individual: SN 2020acat  
dc.subject
Supernovae: general  
dc.subject
Radiative transfer  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-20T14:25:42Z  
dc.journal.volume
683  
dc.journal.number
A241  
dc.journal.pagination
1-28  
dc.journal.pais
Francia  
dc.journal.ciudad
París  
dc.description.fil
Fil: Ergon, Mattias. Stockholms Universitet; Suecia  
dc.description.fil
Fil: Lundqvist, Peter. Stockholms Universitet; Suecia  
dc.description.fil
Fil: Fransson, Claes. Stockholms Universitet; Suecia  
dc.description.fil
Fil: Kuncarayakti, Hanindyo. University of Turku; Finlandia  
dc.description.fil
Fil: Das, Kaustav K.. California Institute of Technology; Estados Unidos  
dc.description.fil
Fil: De, Kishalay. Massachusetts Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Fremling, Christoffer. California Institute of Technology; Estados Unidos  
dc.description.fil
Fil: Medler, Kyle. Liverpool John Moores University; Reino Unido  
dc.description.fil
Fil: Maeda, Keiichi. Kyoto University; Japón  
dc.description.fil
Fil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; Italia  
dc.description.fil
Fil: Sollerman, Jesper. Stockholms Universitet; Suecia  
dc.description.fil
Fil: Stritzinger, Maximilian. University Aarhus; Dinamarca  
dc.journal.title
Astronomy and Astrophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202346718  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1051/0004-6361/202346718