Mostrar el registro sencillo del ítem

dc.contributor.author
Cincotta, Pablo Miguel  
dc.contributor.author
Giordano, Claudia Marcela  
dc.date.available
2025-03-21T11:22:10Z  
dc.date.issued
2024-10  
dc.identifier.citation
Cincotta, Pablo Miguel; Giordano, Claudia Marcela; On the timescales in the chaotic dynamics of a 4D symplectic map; American Institute of Physics; Chaos; 34; 10; 10-2024; 1-18  
dc.identifier.issn
1054-1500  
dc.identifier.uri
http://hdl.handle.net/11336/256780  
dc.description.abstract
In this work, we investigate different timescales of chaotic dynamics in a multi-parametric 4D symplectic map. We compute the Lyapunov time and a macroscopic timescale, the instability time, for a wide range of values of the system’s parameters and many different ensembles of initial conditions in resonant domains. The instability time is obtained by plain numerical simulations and by its estimates from the diffusion time, which we derive in three different ways: through a normal and an anomalous diffusion law and by the Shannon entropy, whose formulation is briefly revisited. A discussion about which of the four approaches provide reliable values of the timescale for a macroscopic instability is addressed. The relationship between the Lyapunov time and the instability time is revisited and studied for this particular system where in some cases, an exponential or polynomial law has been observed. The main conclusion of the present research is that only when the dynamical system behaves as a nearly ergodic one such relationship arises and the Lyapunov and instability times are global timescales, independent of the position in phase space. When stability regions prevent the free diffusion, no correlations between both timescales are observed, they are local and depend on both the position in phase space and the perturbation strength. In any case, the instability time largely exceeds the Lyapunov time. Thus, when the system is far from nearly ergodic, the timescale for predictable dynamics is given by the instability time, being the Lyapunov time its lower bound.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHAOS  
dc.subject
DIFFUSION  
dc.subject
LYAPUNOV TIME  
dc.subject
INSTABILITY TIME  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the timescales in the chaotic dynamics of a 4D symplectic map  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-20T14:26:25Z  
dc.identifier.eissn
1089-7682  
dc.journal.volume
34  
dc.journal.number
10  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.description.fil
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina  
dc.journal.title
Chaos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/34/10/103109/3315298/On-the-timescales-in-the-chaotic-dynamics-of-a-4D?redirectedFrom=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/5.0232321