Mostrar el registro sencillo del ítem
dc.contributor.author
Cincotta, Pablo Miguel

dc.contributor.author
Giordano, Claudia Marcela

dc.date.available
2025-03-21T11:22:10Z
dc.date.issued
2024-10
dc.identifier.citation
Cincotta, Pablo Miguel; Giordano, Claudia Marcela; On the timescales in the chaotic dynamics of a 4D symplectic map; American Institute of Physics; Chaos; 34; 10; 10-2024; 1-18
dc.identifier.issn
1054-1500
dc.identifier.uri
http://hdl.handle.net/11336/256780
dc.description.abstract
In this work, we investigate different timescales of chaotic dynamics in a multi-parametric 4D symplectic map. We compute the Lyapunov time and a macroscopic timescale, the instability time, for a wide range of values of the system’s parameters and many different ensembles of initial conditions in resonant domains. The instability time is obtained by plain numerical simulations and by its estimates from the diffusion time, which we derive in three different ways: through a normal and an anomalous diffusion law and by the Shannon entropy, whose formulation is briefly revisited. A discussion about which of the four approaches provide reliable values of the timescale for a macroscopic instability is addressed. The relationship between the Lyapunov time and the instability time is revisited and studied for this particular system where in some cases, an exponential or polynomial law has been observed. The main conclusion of the present research is that only when the dynamical system behaves as a nearly ergodic one such relationship arises and the Lyapunov and instability times are global timescales, independent of the position in phase space. When stability regions prevent the free diffusion, no correlations between both timescales are observed, they are local and depend on both the position in phase space and the perturbation strength. In any case, the instability time largely exceeds the Lyapunov time. Thus, when the system is far from nearly ergodic, the timescale for predictable dynamics is given by the instability time, being the Lyapunov time its lower bound.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHAOS
dc.subject
DIFFUSION
dc.subject
LYAPUNOV TIME
dc.subject
INSTABILITY TIME
dc.subject.classification
Astronomía

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
On the timescales in the chaotic dynamics of a 4D symplectic map
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-20T14:26:25Z
dc.identifier.eissn
1089-7682
dc.journal.volume
34
dc.journal.number
10
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Cincotta, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.description.fil
Fil: Giordano, Claudia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
dc.journal.title
Chaos

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/34/10/103109/3315298/On-the-timescales-in-the-chaotic-dynamics-of-a-4D?redirectedFrom=fulltext
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/5.0232321
Archivos asociados