Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Applying neural networks for short and long-term hourly electricity consumption forecasting in universities: A simultaneous approach for energy management

Chevez, Pedro JoaquínIcon ; Martini, IreneIcon
Fecha de publicación: 11/2024
Editorial: Elsevier
Revista: Journal of Building Engineering
ISSN: 2352-7102
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Humanidades

Resumen

Predictive models for energy consumption are increasingly relevant for buildings with mediumhigh demands, such as public buildings. These models enable effective energy management, especially in contexts of budget constraints, maximizing resource efficiency. Thus, university buildings are interesting cases because they meet the above-mentioned conditions, they can be managed by the public or private sector and have high societal impact. This work aims to simultaneously develop two predictive models for hourly electricity demand in a university building: one for the short-term (next hour) and one for the long-term (all hours of the year). The methodology consists in: analyzing the data using descriptive statistics to identify relevant variables; building the neural network models in Python; and evaluating them with performance indicators. The short-term model, which includes the previous hour’s energy as independent variable, achieved a relative error of 16.0 %, an R2 = 91.17, RMSE = 0.512 kWh, and MAE = 0.325 kWh. The long-term model, which omits this variable, showed a relative error of 31.7 %, R2 = 74.69, RMSE = 0.864 kWh, and MAE = 0.566 kWh. The study highlights the effectiveness of neural networks in energy forecasting. It also emphasizes the importance of using the previous hour’s energy as a variable to obtain short-term accuracy; but also the possibility of building models without it, allowing for long-term approaches. The novelty lies in the simultaneous approach of two predictive horizons in a university building. This approach can contribute by providing accurate information to energy control algorithms that integrate renewable energy, storage, grid power, etc., to optimize the use of resources and improving environmental sustainability.
Palabras clave: ELECTRICITY FORECAST , UNIVERSITY BUILDING , NEURAL NETWORK MODEL , ENERGY MANAGEMENT
Ver el registro completo
 
Archivos asociados
Tamaño: 16.23Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256757
URL: https://linkinghub.elsevier.com/retrieve/pii/S2352710224021806
DOI: http://dx.doi.org/10.1016/j.jobe.2024.110612
Colecciones
Articulos (IIPAC)
Articulos de INSTITUTO DE INVESTIGACIONES Y POLITICAS DEL AMBIENTE CONSTRUIDO
Citación
Chevez, Pedro Joaquín; Martini, Irene; Applying neural networks for short and long-term hourly electricity consumption forecasting in universities: A simultaneous approach for energy management; Elsevier; Journal of Building Engineering; 97; 11-2024; 1-23
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES