Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A data-driven model for the operation and management of prosumer markets in electric smart grids

Alvarez, Gonzalo ExequielIcon ; Kröhling, Dan EzequielIcon ; Martinez, Ernesto CarlosIcon
Fecha de publicación: 10/2024
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers & Industrial Engineering
ISSN: 0360-8352
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The digital transformation of electric power systems requires forecasts and planning for optimal management, as well as real-time data streaming for the ongoing optimization of the system during operation. Recent research efforts have developed models for power system capacity planning, real-time monitoring and control, fault analysis, and energy efficiency assessment. However, those models are usually not integrated and do not combine operational data with management information and real-time decision-making. This paper conceives a data-driven model that integrates optimization and machine learning techniques for optimal operation and management of prosumer markets in electric smart grids. While classical optimization is used during day-ahead mode for operation planning, Gaussian Processes are used to predict demand forecasts for day-ahead and pre-dispatch modes while assimilating real-time measurements. The proposed approach is applied in a case study comprising a community manager coordinating a smart grid with prosumers operating thermal and renewable generators. Results highlight that the data-driven model helps achieve near-optimal operation of the smart grid in normal conditions while guaranteeing its reliability under disruptive events.
Palabras clave: PROSUMER MARKETS , SMART GRIDS , DISTRIBUTED OPTIMIZATION , MACHINE LEARNING
Ver el registro completo
 
Archivos asociados
Tamaño: 5.321Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256571
URL: https://linkinghub.elsevier.com/retrieve/pii/S0360835224006132
DOI: http://dx.doi.org/10.1016/j.cie.2024.110492
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Alvarez, Gonzalo Exequiel; Kröhling, Dan Ezequiel; Martinez, Ernesto Carlos; A data-driven model for the operation and management of prosumer markets in electric smart grids; Pergamon-Elsevier Science Ltd; Computers & Industrial Engineering; 196; 10-2024; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES