Artículo
Extending Schmidt vector from pure to mixed states for characterizing entanglement
Fecha de publicación:
12/2024
Editorial:
American Institute of Physics
Revista:
APL Quantum
ISSN:
2835-0103
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this study, we enhance the understanding of entanglement transformations and their quantification by extending the concept of Schmidt vector from pure to mixed bipartite states, exploiting the lattice structure of majorization. The Schmidt vector of a bipartite mixed state is defined using two distinct methods: as a concave roof extension of Schmidt vectors of pure states, or equivalently, from the set of pure states that can be transformed into the mixed state through local operations and classical communication (LOCC). We demonstrate that the Schmidt vector fully characterized separable and maximally entangled states. Furthermore, we prove that the Schmidt vector is monotonic and strongly monotonic under LOCC, giving necessary conditions for conversions between mixed states. Additionally, we extend the definition of the Schmidt rank from pure states to mixed states as the cardinality of the support of the Schmidt vector and show that it is equal to the Schmidt number introduced in previous work [Terhal and Horodecki, Phys. Rev. A 61, 040301(R) (2000)]. Finally, we introduce a family of entanglement monotones by considering concave and symmetric functions applied to the Schmidt vector.
Palabras clave:
ENTANGLEMENT
,
SCHIMDT VECTOR
,
MAJORIZATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Meroi, F.; Losada, M.; Bosyk, Gustavo Martin; Extending Schmidt vector from pure to mixed states for characterizing entanglement; American Institute of Physics; APL Quantum; 1; 4; 12-2024; 1-14
Compartir
Altmétricas