Artículo
Edge deletion to tree-like graph classes
Fecha de publicación:
05/2024
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a fixed property (graph class) Π, given a graph G and an integer k, the Π-deletion problem consists in deciding if we can turn G into a graph with the property Π by deleting at most k edges. The Π-deletion problem is known to be NP-hard for most of the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability and permutation graphs, among others; even deletion to cacti is known to be NP-hard for general graphs. However, there is a notable exception: the deletion problem to trees is polynomial. Motivated by this fact, we study the deletion problem for some classes similar to trees, addressing in this way a knowledge gap in the literature. We prove that deletion to cacti is hard even when the input is a bipartite graph. On the positive side, we show that the problem becomes tractable when the input is chordal, and for the special case of quasi-threshold graphs we give a simpler and faster algorithm. In addition, we present sufficient structural conditions on the graph class Π that imply the NP-hardness of the Π-deletion problem, and show that deletion from general graphs to some well-known subclasses of forests is NP-hard.
Palabras clave:
EDGE DELETION PROBLEMS
,
MODIFICATION PROBLEMS
,
SPARSE GRAPH CLASSES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Koch, Ivo Valerio; Pardal, Nina; Fernandes Dos Santos, Vinicius; Edge deletion to tree-like graph classes; Elsevier Science; Discrete Applied Mathematics; 348; 5-2024; 122-131
Compartir
Altmétricas