Artículo
A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes
Fecha de publicación:
11/2024
Editorial:
Cornell University
Revista:
ArXiv.org
ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a Finite Volume formulation for determining discontinuous distributions of magnetic fields within non-orthogonal and non-uniform meshes. The numerical approach is based on the discretization of the vector potential variant of the equations governing static magnetic field distribution in magnetized, permeable and current carrying media. After outlining the derivation of the magnetostatic balance equations and its associated boundary conditions, we propose a cell–centered Finite Volume framework for spatial discretization and a Block Gauss–Seidel multi-region scheme for solution. We discuss the structure of the solver, emphasizing its effectiveness and addressing stabilization and correction techniques to enhance computational robustness. We validate the accuracy and efficacy of the approach through numerical experiments and comparisons with the Finite Element method.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Riedinger, Augusto; Saravia, César Martín; Ramirez, Jose Miguel; A Finite Volume scheme for the solution of discontinuous magnetic field distributions on non-orthogonal meshes; Cornell University; ArXiv.org; 11-2024; 1-20
Compartir
Altmétricas