Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards a true conservation zero tillage system: “A proposed solution based on computer vision to herbicide resistance”

López Correa, Juan ManuelIcon ; Moreno, Hugo; Pérez, Diego SebastiánIcon ; Bromberg, FacundoIcon ; Andújar, Dionisio
Fecha de publicación: 02/2024
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The Zero Tillage (ZT) or Non-Tillage system constitutes an agricultural production approach designed for improved soil conservation, reduced fossil fuel usage, mitigation of waterway pollution, water and wind erosion, and addressing soil compaction, among other objectives. In this way, ZT promises more sustainable agriculture. However, current ZT production systems depend on herbicide applications for weed control. The use of herbicides with the same modes of action over many years has led to numerous resistant weed species, which end up threatening the success of the herbicide weed control and, consequently, the overall success of the ZT system. Being able to automatically detect and classify weed species directly under the sprayer during the chemical application is an alternative to control populations of weeds since it would allow selecting the herbicide and dose for those particular species. This study, conducted over 15 years in commercial fields utilizing Zero Tillage (ZT) management, examined various ground covers intrinsic to the ZT system originating from previous crops or residues post-harvest. ZT features a broad spectrum of contexts due to the complexity of different ground cover types, which challenge computer vision techniques. The assessment focused on the automatic detection and classification of among the most problematic monocotyledonous and dicotyledonous weed species in the province of Cordoba in Argentina, with the objective of enabling a more targeted and selective approach to their control. These are Amaranthus palmeri, Echinochloa crus-galli, Eleusine indica, Parietaria debilis and Conyza sumatrensis. Additionally, some species belong to the same botanical families with several morphological resemblances that defy vision algorithms. This work proceeded through a machine learning approach applied to computer vision features such as SIFT (scale-invariant feature transform), K-means (clustering), and Bag of Features over the Support Vector Machine for classification. The results showed an accuracy between 89 % and 98 % over the species, allowing a significant reduction of herbicide while applying the adequate active ingredient. Moreover, virtual binary maps from weed patches are devised to be implemented through ISOBUS protocol. Thus the current research contributes significantly to the issue of controlling populations of weeds in the ZT agriculture system.
Palabras clave: Weed Management , Weeds Species Classification , Zero Tillage , Computer Vision Machine Learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 9.963Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/256386
URL: https://www.sciencedirect.com/science/article/pii/S016816992300964X
DOI: http://dx.doi.org/10.1016/j.compag.2023.108576
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
López Correa, Juan Manuel; Moreno, Hugo; Pérez, Diego Sebastián; Bromberg, Facundo; Andújar, Dionisio; Towards a true conservation zero tillage system: “A proposed solution based on computer vision to herbicide resistance”; Elsevier; Computers and Eletronics in Agriculture; 217; 108576; 2-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES